Computational Drug Discovery and Design

(backadmin) #1

  1. Fechner U, Schneider G (2007) Flux (2):
    comparison of molecular mutation and cross-
    over operators for ligand-based de novo
    design. J Chem Inf Model 47:656–667

  2. Dey F, Cafl isch A (2008) Fragment-basedde
    novoligand design by multi objective evolu-
    tionary optimization. J Chem Inf Model
    48:679–690

  3. Hartenfeller M, Proschak E, Schu ̈ller A,
    Schneider G (2008) Concept of combinato-
    rialde novodesign of drug-like molecules by
    particle swarm optimization. Chem Biol Drug
    Des 72:16–26

  4. Hecht D, Fogel GB (2009) Novelin silico
    approach to drug discovery via computational
    intelligence. J Chem Inf Model
    49:1105–1121

  5. Moriaud F, Doppelt-Azeroual O, Martin L,
    Oguievetskaia K, Koch K, Vorotyntsev A,
    Adcock SA, Delfaud F (2009) Computational
    fragment-based approach at PDB scale by
    protein local similarity. J Chem Inf Model
    49:280–294

  6. Nicolaou CA, Apostolakis J, Pattichis CS
    (2009)De novodrug design using multiobjec-
    tive evolutionary graphs. J Chem Inf Model
    49:295–307

  7. Durrant JD, Amaro RE, McCammon JA
    (2009) AutoGrow: a novel algorithm for pro-
    tein inhibitor design. Chem Biol Drug Des
    73:168–178

  8. TY T, Chang KW, Chen CY (2011) iScreen:
    world’s first cloud-computing web server for
    virtual screening andde novo drug design
    based on TCM database@Taiwan. J Comput
    Aided Mol Des 25:525–531

  9. Pettersen EF, Goddard TD, Huang CC,
    Couch GS, Greenblatt DM, Meng EC, Ferrin
    TE (2004) UCSF chimera—a visualization
    system for exploratory research and analysis.
    J Comput Chem 25:1605–1612

  10. Eswar N, Webb B, Marti-Renom MA, Mad-
    husudhan MS, Eramian D, Shen MY,
    Pieper U, Sali A (2007) Comparative protein
    structure modeling using MODELLER. Curr
    Protoc Protein Sci 50(2.9):2.9.1–2.9.31

  11. Wang R, Liu L, Lai L, Tang Y (1998)
    SCORE: a new empirical method for estimat-
    ing the binding affinity of a protein-ligand
    complex. Mol Model Ann 4:379–394

  12. Lagorce D, Sperandio O, Galons H, Miteva
    MA, Villoutreix BO (2008) FAF-Drugs2: free
    ADME/tox filtering tool to assist drug dis-
    covery and chemical biology projects. BMC
    Bioinformatics 9:396

  13. Reutlinger M, Koch CP, Reker D,
    Todoroff N, Schneider P, Rodrigues T,


Schneider G (2013) Chemically advanced
template search (CATS) for scaffold-hopping
and prospective target prediction for‘orphan’-
molecules. Mol Inform 32:133–138


  1. Trott O, Olson AJ (2010) AutoDock Vina:
    improving the speed and accuracy of docking
    with a new scoring function, efficient optimi-
    zation, and multithreading. J Comput Chem
    31:455–461

  2. Hess B, Kutzner C, Van Der Spoel D, Lindahl
    E (2008) GROMACS 4: algorithms for
    highly efficient, load-balanced, and scalable
    molecular simulation. J Chem Theory Com-
    put 4:435–447

  3. Schro ̈dinger Release 2017–1: SiteMap,
    Schro ̈dinger, LLC, New York, NY, 2017

  4. Selvaraj C, Priya RB, Lee JK, Singh SK (2015)
    Mechanistic insights of SrtA-LPXTG blockers
    targeting the transpeptidase mechanism in
    Streptococcus mutans. RSC Adv
    5:100498–100510

  5. Yang J, Roy A, Zhang Y (2013) Protein-
    ligand binding site recognition using comple-
    mentary binding-specific substructure com-
    parison and sequence profile alignment.
    Bioinformatics 29:2588–2595

  6. Singh S, Prabhu SV, Suryanarayanan V,
    Bhardwaj R, Singh SK, Dubey VK (2016)
    Molecular docking and structure based virtual
    screening studies of potential drug target,
    CAAX prenyl proteases, of Leishmania dono-
    vani. J Biomol Struct Dyn 34(11):2367–2386

  7. Sastry GM, Adzhigirey M, Day T,
    Annabhimoju R, Sherman W (2013) Protein
    and ligand preparation: Parameters, proto-
    cols, and influence on virtual screening
    enrichments. J Comput Aid Mol Des
    27:221–234

  8. Bhattacharya D, Nowotny J, Cao R, Cheng J
    (2016) 3Drefine: an interactive web server for
    efficient protein structure refinement. Nucleic
    Acids Res 44:W406–W409

  9. Reddy KK, Singh SK (2015) Insight into the
    binding mode between N-methyl Pyrimi-
    dones and prototype foamy virus integrase-
    DNA complex by QM-polarized ligand dock-
    ing and molecular dynamics simulations. Curr
    Top Med Chem 15:43–49

  10. Aarthy M, Panwar U, Selvaraj C, Singh SK
    (2017) Advantages of structure-based drug
    design approaches in neurological disorders.
    Curr Neuropharmacol 15(8):1136–1155.
    https://doi.org/10.2174/
    1570159X15666170102145257

  11. Schro ̈dinger Release 2017–1: QikProp,
    Schro ̈dinger, LLC, New York, NY, 2017


De Novo Design of Ligands 85
Free download pdf