Produce Degradation Pathways and Prevention

(Romina) #1

Microbial Ecology of Spoilage 415



  1. Dainty, R.H. et al., Bacterial sources of putrescine and cadaverine in chill stored
    vacuum- packaged beef, J. Appl. Bacteriol., 61, 117, 1986.

  2. Jorgensen, L.V., Huss, H.H., and Dalgaard, P., The effect of biogenic amine produc-
    tion by single bacterial cultures and Metabiosis on cold-smoked salmon, J. Appl.
    Microbiol., 89, 920, 2000.

  3. Whitehead, N.A. et al., Quorum-sensing in Gram-negative bacteria, FEMS Microbiol.
    Rev., 25, 365, 2001.

  4. Davies, D.G. et al., The involvement of cell-to-cell signals in the development of a
    bacterial biofilms, Science, 280, 295, 1998.

  5. Passador, L. et al., Expression of Pseudomonas aeruginosa virulence gene requires
    cell-to-cell communication, Science, 260, 1127, 2001.

  6. Bainton, N.J. et al., N-(-3-oxohexanoyl)-L-homoserine lactone regulates carbapenem
    antibiotic production in Erwinia carotovora, Biochem. J., 288, 997, 1992.

  7. Zhang, L. et al., Agrobacterium conjugation and gene regulation by N-acyl-
    homoserine lactones, Nature, 362, 446, 1993.

  8. Eberl, L. et al., Differentiation of Serratia liquefaciens into swarm cells is controlled
    by the expression of the flhD master operon, J. Bacteriol., 178, 554, 1996.

  9. Eberl, L., Molin, S., and Givskov, M., Surface motility in Serratia liquefaciens, J.
    Bacteriol., 181, 1703, 1999.

  10. Huber, B. et al., The cep quorum-sensing system of Burkholderia cepacia H111
    controls biofilms formation and swarming motility, Microbiology, 147, 2517, 2001.

  11. Mae, A. et al., Transgenic plants producing the bacterial pheromone N-acyl-
    homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen
    Erwinia carotovora, Mol. Plant-Microb. Interact., 14, 1035, 2001.

  12. Beuchat, L.R., Ecological factors influencing survival and growth of pathogens on
    fruits and vegetables, Microbes Infect., 4, 413, 2002.

  13. Beuchat, L.R. and Ryu, J.H., Produce handling and processing practices, Emerg.
    Infect. Dis., 3, 459, 1997.

  14. Hedberg, C.W., MacDonald, K.L., and Osterholm, M.T., Changing epidemiology of
    foodborne disease: a Minnesota perspective, Clin. Infect. Dis., 18, 671, 1994.

  15. Sofos, J.N. et al., Naturally occurring antimicrobial agents in food, Task Force Rep.
    132, Council for Agricultural Science and Technology, Ames, IA, 132, 103, 1998.

  16. Beuchat, L.R., Pathogenic microorganisms associated with fresh produce, J. Food
    Prot., 59, 204, 1996.

  17. Beuchat, L.R., Listeria monocytogenes: incidence on vegetables, Food Control, 7,
    223, 1996.

  18. Beuchat, L.R., Surface decontamination of fruits and vegetables eaten raw: a review,
    Food Safety Unit, World Health Organization, WHO/FSF/98.2, 42, 1998.

  19. Francis, G.A., Thomas, C., and O’Beirne, D., The microbiological safety of minimally
    processed vegetables, Int. J. Food Sci. Technol., 34, 1, 1999.

  20. Nguyen-The, C. and Carlin, F., Fresh and processed vegetables, in The Microbiolog-
    ical Safety and Quality of Food, Vol. 1, Lund, B.M., Baird-Parker, T.C., and Gould,
    G.W., Eds., Aspen Publishing, Gaithersburg, MD, 2000, p. 620.

  21. Brackett, R.E., Incidence, contributing factors, and control of bacterial pathogens on
    produce, Postharv. Biol. Technol., 15, 305, 1999.

  22. Ortega, Y.R. et al., Isolation of Cryptosporidium parvum and Cyclospora cayetanensis
    from vegetables collected in markets of an endemic region in Peru, Am. J. Trop. Med.
    Hyg., 57, 683, 1997.

  23. Sterling, C.R. and Ortega, Y.R., Cyclospora: an enigma worth unraveling, Emerg.
    Infect. Dis., 5, 48, 1999.

Free download pdf