Produce Degradation Pathways and Prevention

(Romina) #1

Bacterial Infiltration and Internalization in Fruits and Vegetables 461


Sebastian, J., Chandra, A.K., and Kolattukudy, P.E., Discovery of a cutinase-producing
Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp.
in the phyllosphere, J. Bacteriol., 169, 131–136, 1987.
Seeman, B.K., Sumner, S.S., Marini, R., and Kniel, K.E., Internalization of Escherichia coli
in apples under natural conditions, Dairy Food Environ. Sanit., 22, 667–673, 2003.
Segall, R.H., Henry, F.E., and Dow, A.T., Effect of dump tank water temperature on the incidence
of bacterial soft rot of tomatoes, Proc. Florida State Hortic. Soc., 90, 204–205, 1997.
Senkel, I.A., Henderson, R.A., Jolbitato, B., and Meng, J., Use of hazard analysis critical
control point and alternative treatments in the production of apple cider, J. Food Prot.,
62, 778–785, 1999.
Senter, S.D., Cox, N.A., Bailey, J.S., and Forbes, W.R., Microbiological changes in fresh
market tomatoes during packing operations, J. Food Sci., 50, 254–255, 1985.
Seo, K.H. and Frank, J.F., Attachment of Escherichia coli O157:H7 to lettuce leaf surface
and bacterial viability in response to chlorine treatment as demonstrated confocal
scanning laser microscopy, J. Food Prot., 62, 3–9, 1999.
Shere, J.A., Bartlett, K.J. and Kaspar, C.W. Longitudinal study of Escherichia coli 0157:H7
dissemination on four dairy farms in Wisconsin. Appl. Environ. Microbiol., 64,
1390–1399, 1998.
Solomon, E.B., Yaron, S., and Matthews, K.R., Transmission and internalization of Escheri-
chia coli O157:H7 from contaminated manure and irrigation water into lettuce plant
tissue, Appl. Environ. Microbiol., 68, 397–400, 2002.
Suoniemi, A., Bjorklof, K., Haahtela, K., and Romantschuk, M., Pili of Pseudomonas syringae
pathovar syringae enhance initiation of bacterial epiphytic colonization of bean,
Microbiology, 141, 497–503, 1995.
Takahashi, T. and Doke, N., A role of extracellular polysaccharides of Xanthomonas campes-
tris pv. Citri in bacterial adhesion to citrus leaf tissues in preinfectious stage, Ann.
Phytopathol. Soc. Jap., 50, 565–573, 1984.
Takeuchi, K., Matute, C.M., Hasan, A.N., and Frank, J.F., Comparison of the attachment of
Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and
Pseudomonas fluorescens to lettuce leaves, J. Food Prot., 63, 1433–1437, 2000.
Ukuku, D.O. and Fett, W.F., Relationship of cell surface charge and hydrophobicity to strength
of attachment of bacteria to cantaloupe rind, J. Food Prot., 65, 1093–1099, 2002.
U.S. FDA, CFSAN, Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and
Vegetables, U.S. Food and Drug Administration, October 1998, pp. 1–40.
Van der Mei, H.C., Rosenburg, M., and Brusscher, H.J., Assessment of microbial cell surface
hydrophobicity, in Microbial Cell Surface Analysis, Mozes, H.J., Handley, P.S., and
Busscher, H.J., VCH, New York, 1991.
Van Gardingen, P.R., Grace, J., and Jeffree, C.E., Abrasive damage by wind to the needle
surfaces of Picea sitchensis (Bong.) Carr. and Pinus sylvestris L., Plant Cell Environ.,
14, 185–193, 1991.
Van Loosdrrecht, M.C.M., Lyklema, J., Norde, W., Schara, G., and Zehnder, A.J.B., The role
of bacterial cell wall hydrophobicity in adhesion, Appl. Environ. Microbiol., 53,
1893–1897, 1987.
Vigneault, C., Bartz, J.A., and Sargent, S.A., Postharvest decay risk associated with hydro-
cooling tomatoes, Plant Dis., 84, 1314–1318, 2000.
Walderhaug, M.O., Edelson-Mammel, S.G., DeJesus, A.J., Eblen, B.S., Miller, A.J., and
Buchanan, R.L., Preliminary studies on the potential for infiltration, growth and
survival of Salmonella enterica serovar Hartford and Escherichia coli O157:H7
within oranges, U.S. Food and Drug Administration, Center for Food Safety and
Applied Nutrition, Washington, DC, 1999.

Free download pdf