Produce Degradation Pathways and Prevention

(Romina) #1

502 Produce Degradation: Reaction Pathways and their Prevention



  1. Liao, C.-H. et al. Biochemical characterization of pectate lyases produced by fluo-
    rescent pseudomonads associated with spoilage of fresh fruits and vegetables, J. Appl.
    Microbiol., 83, 10, 1997.

  2. Liao, C.-H., McCallus, D.E., and Fett, W.F., Molecular characterization of two gene
    loci required for production of the key pathogenicity factor pectate lyase in Pseudomo-
    nas viridiflava, Mol. Plant-Microbe Interact., 7, 391, 1994.

  3. Liao, C.-H. et al., Identification of gene loci controlling pectate lyase production and
    soft-rot pathogenicity in Pseudomonas marginalis, Can. J. Microbiol., 43, 425, 1997.

  4. Liao, C.-H. et al. The repB gene required for production of extracellular enzymes
    and fluorescent siderophores in Pseudomonas viridiflava is an analog of the gacA
    gene of Pseudomonas syringae, Can. J. Microbiol., 42, 177, 1996.

  5. Nikaidou, N., Kamio, Y., and Izaki, K., Molecular cloning and nucleotide sequence
    of the pectate lyase gene from Pseudomonas marginalis N6301, Biosci. Biotechnol.
    Biochem., 57, 957, 1993.

  6. Bauer, D.W. and Collmer, A., Molecular cloning, characterization, and mutagenesis
    of a pel gene from Pseudomonas syringae pv. lachrymans encoding a member of the
    Erwinia chrysanthemi PelADE family of pectate lyases, Mol. Plant-Microbe Interact.
    10, 369, 1997.

  7. Nagel, C.W. and Baughn, R.H., Comparison of growth and pectolytic enzyme pro-
    duction by Bacillus polymyxa, J. Bacteriol., 83, 1, 1962.

  8. Karbassi, A. and Vaughn, R.H., Purification and properties of polygalacturonic acid
    trans-eliminase from Bacillus stearothermophilus, Can. J. Microbiol., 26, 377, 1980.

  9. Nasser, W. et al., Pectate lyase from Bacillus subtilis: molecular characterization of
    the gene, and properties of the cloned enzyme, FEBS Lett., 335, 319, 1993.

  10. Sacherer, P., Défago, G., and Haas, D., Extracellular protease and phosphlipase C
    are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomo-
    nas fluorescens CHA0, FEMS Microbiol. Lett., 116, 155, 1994.

  11. Laville, J. et al., Global control in Pseudomonas fluorescens mediating antibiotic
    synthesis and suppression of black root rot of tobacco, Proc. Natl. Acad. Sci. USA,
    89, 1562, 1992.

  12. Gaffney, T.D. et al., Global regulation of expression of anti-fungal factors by a
    Pseudomonas fluorescens biological control strain, Mol. Plant-Microbe Interact., 7,
    455, 1994.

  13. Corbell, N. and Loper, J.E., A global regulator of secondary metabolite production
    in Pseudomonas fluorescens Pf-5, J. Bacteriol., 177, 6230, 1995.

  14. Hrabak, E.M. and Willis, D.K., The lemA gene required for pathogenicity of
    Pseudomonas syringae pv. syringae on bean is a member of a family of two-compo-
    nent regulators, J. Bacteriol., 174, 3011, 1992.

  15. Whistler, C.A. et al., The two-component regulators GacS and GacA influence accu-
    mulation of stationary-phase sigma factor δs and the stress response in Pseudomonas
    fluorescens Pf-5, J. Bacteriol, 180, 6635, 1998.

  16. Reimmann, C. et al., The global activator GacA of Pseudomonas aeruginosa PAO
    positively controls the production of the autoinducer N-butyryl-homoserine lactone
    and the formation of the virulence factors pyocyanin, cyanide, and lipase, Mol.
    Microbiol., 24, 309, 1997.

  17. Sandkvist, M., Biology of type II secretion, Mol. Microbiol., 40, 271, 2001.

  18. Koster, M., Bitter, W., and Tommassen, J., Protein secretion mechanisms in Gram-
    negative bacteria, Int. J. Med. Microbiol., 290, 325, 2000.

Free download pdf