9 Euler, Dehn–Sommerville Characteristics, and Their Applications 1679.4 Homology Groups and Characteristic Classes
Given asimplicial complexK, we fix an order of its verticesα 0 ,α 1 ,...,αm.
Then anr-dim simplex ofKcan be written as [αi 0 ,αi 1 ,...,αir],i 0 <···<ir.
This fixes a canonicalorientationon it.
Suppose that we are also given anabelian groupGwith operation “+”. A
k-dimensionalchainofKwith coefficients inGis a finite linear combination
of distinctk-simplices ofKof the form
ck=∑
igiσi,gi∈G.Chains ofKof dimensionkform an abelian groupCk(K) with the sum of
two chainsckandc′k=
∑
ig′
iσigiven byck+c′k=∑
i(gi+gi′)σi.Theboundaryof ann-simplexσn=[α 0 ,...,αn] is the (n−1)-chain∂σn=∂[α 0 ,...,αn]:=∑ni=0(−1)iσn(i−)^1 ,whereσ(ni−)^1 := [α 0 ,...,α̂i,...,αn]. For example,
∂[α 0 ]=0,
∂[α 0 ,α 1 ]=[α 1 ]−[α 0 ],
∂[α 0 ,α 1 ,α 2 ]=[α 1 α 2 ]−[α 0 α 2 ]+[α 0 α 1 ].For anyn-dim simplex we have∂∂[α 0 ...αn]=∑ni=0(−1)i∂σn(i−)^1 =0.
a
a
a
012Fig. 9.3.Boundary