Invasive Stink Bugs and Related Species (Pentatomoidea)

(Tuis.) #1

Symbiotic Microorganisms Associated with Pentatomoidea 667


access (see http://www.ncbi.nlm.nih.gov/genome?term=txid33345[orgn])..) As shown in several species,
symbiotic bacteria play pivotal metabolic roles in pentatomomorphan host insects, implying that the sym-
biotic associations could be good targets for pest stink bug control. The growing body of information on the
molecular mechanisms involved in symbiont infection, colonization, establishment, and maintenance pro-
cesses may provide a novel molecular target toward pest control of the harmful pentatomomorphan species.


14.6 Acknowledgments


We thank David A. Rider (Entomology Department, North Dakota State University, Fargo) and Tom
J. Henry (Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History,
Washington, DC) for their help in reviewing the taxonomic status of the heteropterans listed in Table 14.1.


14.7 References Cited


Abe, Y., K. Mishiro, and M. Takanashi. 1995. Symbiont of brown-winged green bug, Plautia stali Scott.
Japanese Journal of Applied Entomology and Zoology 39: 109–115.
Akman, L., A. Yamashita, H. Watanabe, K. Oshima, T. Shiba, M. Hattori, and S. Aksoy. 2002. Genome
sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature
Genetics 32: 402–407. doi:10.1038/ng986.
Aksoy, S. 2000. Tsetse – A haven for microorganisms. Parasitology Today 16: 114–118. doi:10.1016
/S0169- 4758(99)01606 -3.
Bansal, R., A.P. Michel, and Z.L. Sabree. 2014. The crypt-dwelling primary bacterial symbiont of the polyph-
agous pentatomid pest Halyomorpha halys (Hemiptera: Pentatomidae). Environmental Entomology 43:
617– 625. doi:10.16 03/ E N13341.
Bauer, E., H. Salem, M. Marz, H. Vogel, and M. Kaltenpoth. 2014. Transcriptomic immune response of the
cotton stainer Dysdercus fasciatus to experimental elimination of vitamin-supplementing intestinal
symbionts. PLoS One 9: e114865. doi:10.1371/journal.pone.0114865.
Baumann, P. 2005. Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual
Review of Microbiology 59: 155–189. doi:10.1146/annurev.micro.59.030804.121041.
Bennett, G.M., and N.A. Moran. 2013. Small, smaller, smallest: the origins and evolution of ancient dual sym-
bioses in a Phloem-feeding insect. Genome Biology and Evolution 5: 1675–1688. doi:10.1093/gbe/evt118.
Bennett, G.M., and N.A. Moran. 2015. Heritable symbiosis: The advantages and perilsof an evolutionary rab-
bit hole. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073
/pnas.1421388112.
Bistolas, K.S., R.I. Sakamoto, J.A. Fernandes, and S.K. Goffredi. 2014. Symbiont polyphyly, co-evolution,
and necessity in pentatomid stinkbugs from Costa Rica. Frontiers in Microbiology 5: 349. doi:10.3389
/f m icb.2014.0 0349.
Boucias, D.G., A. Garcia-Maruniak, R. Cherry, H. Lu, J.E. Maruniak, and V.-U. Lietze. 2012. Detection
and characterization of bacterial symbionts in the Heteropteran, Blissus insularis. FEMS Microbiology
Ecology 82: 629–641. doi:10.1111/j.1574-6941.2012.01433.x.
Bourtzis, K., and T.A. Miller. 2003. Insect symbiosis. CRC press, Boca Raton, FL. 347 pp.
Braendle, C., T. Miura, R. Bickel, A.W. Shingleton, S. Kambhampati, and D.L. Stern. 2003. Developmental
origin and evolution of bacteriocytes in the aphid-Buchnera symbiosis. PLoS Biology 1: 70–76.
doi:10.1371/journal.pbio.0000021.
Brown, A.M., L.Y. Huynh, C.M. Bolender, K.G. Nelson, and J.P. McCutcheon. 2014. Population genomics
of a symbiont in the early stages of a pest invasion. Moleculae Ecology 23: 1516–1530. doi:10.1111
/mec.12366.
Buchner, P. 1965. Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York,
NY. 909 pp.
Charles, H., and H. Ishikawa. 1999. Physical and genetic map of the genome of Buchnera, the primary
endosymbiont of the pea aphid Acyrthosiphon pisum. Journal of Molecular Evolution 48: 142–150.
doi:10.1007/PL00006452.

Free download pdf