Science - USA (2022-06-03)

(Antfer) #1

total-evidence dating and most parsimonious
analyses, were performed. The most parsimo-
nious reconstruction was performed by the
program TNT1.1 ( 37 ), in which only morpho-
logical dataset (data S2) was used. The molec-
ular and morphological data were used in
Bayesian total-evidence dating analysis per-
formed by MrBayes 3.2.7 ( 38 ), in which a
backbone constraint for the extant taxa based
merely on the molecular data ( 36 )wasorwas
not enforced (code files S3 to S5).


Ecology investigations


Various headgear types in terms of develop-
ment and morphology were examined, includ-
ing the following groups: Bovidae, Cervidae,
Antilocapridae + Hoplitomerycidae, and
Giraffoidea/Giraffomorpha (Fig. 6A). In our
scheme, the following aspects were considered:
(i) support element (nasal, frontal, parietal,
or occipital); (ii) position on the cranial roof
(supraorbital, postorbital, or central); (iii) num-
ber of the frontal appendages (single, double,
triple, quadruple, or sextuple); (iv) covering
in the mature state (skin, keratin, or naked);
(v) morphology (spike-like, branched, palmed,
or combined multiforms); (vi) nondeciduous
or deciduous; (vii) presence or absence of burr
in antler; and (viii) fusion of horncores. The
appearance of each headgear type in geological
time was drawn in step lines showing the
cumulative number in each pecoran group
(Table 1).
We investigated the relative length and
thickness of axes and cervical vertebrae III
among various giraffoid taxa. The arithmetic
means of centrum length and cheek teeth row
length were used for generating a bivariate
diagram of cheek teeth row length versus
centrum length. The ratio of minimal width
to centrum length of axes and cervical verte-
brae III in giraffoids were also calculated and
plotted. Data were from previous publications
( 10 , 17 , 39 – 46 ).
In total, 81 enamel samples were collected
from teeth of the Halamagai herbivore com-
munity ford^13 Candd^18 O measurements (data
S7), including ruminants, proboscideans, suids,
rhinocerotids, and equids. Results are reported
in standard delta (d)notationasd^13 Candd^18 O
values in reference to the international car-
bonate standard Vienna Pee Dee belemnite.
Stable isotope data from other herbivore com-
munities from the early-middle Miocene of
northern China were obtained from literature
( 47 , 48 ). All these data (including the previ-
ously published data) were conducted at the
National High Magnetic Field Laboratory,
Florida State University, USA.


REFERENCES AND NOTES



  1. C. Darwin,The Descent of Man, and Selection in Relation to Sex
    (David McKay, new ed., 1874).

  2. J.-B. Lamarck,Philosophie Zoologique, vol. 1(Duminil-Lesueur,
    1809).
    3. R. E. Simmons, R. Altwegg, Necks-for-sex or competing browsers?
    A critique of ideas on the evolution of giraffe.J. Zool. 282 ,6– 12
    (2010). doi:10.1111/j.1469-7998.2010.00711.x
    4. R. E. Simmons, L. Scheepers, Winning by a neck: Sexual
    selection in the evolution of giraffe.Am. Nat. 148 , 771– 786
    (1996). doi:10.1086/285955
    5. S.-Q. Wanget al., Supplementary 3D Models ofDiscokeryx xiezhi.
    Dryad (2022);https://doi.org/10.5061/dryad.dncjsxm0j.
    6. B. Bohlin, Cavicornier derHipparion-Fauna Nord-Chinas.
    Palaeontol. Sin. C 9 ,1–166 (1935).
    7. J. Benoit, P. R. Manger, L. Norton, V. Fernandez, B. S. Rubidge,
    Synchrotron scanning reveals the palaeoneurology of the
    head-buttingMoschops capensis(Therapsida, Dinocephalia).PeerJ
    5 , e3496 (2017). doi:10.7717/peerj.3496;pmid: 28828230
    8. E. Snively, A. Cox, Structural mechanics of pachycephalosaur
    crania permitted head-butting behavior.Palaeontol. Electronica
    11 , 3A (2008).
    9. J. E. Peterson, C. Dischler, N. R. Longrich, Distributions of cranial
    pathologies provide evidence for head-butting in dome-headed
    dinosaurs (Pachycephalosauridae).PLOS ONE 8 , e68620 (2013).
    doi:10.1371/journal.pone.0068620;pmid: 23874691
    10. M. Ríos, I. M. Sánchez, J. Morales, A new giraffid (Mammalia,
    Ruminantia, Pecora) from the late Miocene of Spain, and the
    evolution of the sivathere-samothere lineage.PLOS ONE 12 ,
    e0185378 (2017). doi:10.1371/journal.pone.0185378;
    pmid: 29091914
    11. C. A. Spinage, Horns and other bony structures of the skull of
    the giraffe, and their functional significance.Afr. J. Ecol. 6 ,
    53 – 61 (1968). doi:10.1111/j.1365-2028.1968.tb00900.x
    12. E. B. Davis, K. A. Brakora, A. H. Lee, Evolution of ruminant
    headgear: A review.Proc. Biol. Sci. 278 , 2857–2865 (2011).
    doi:10.1098/rspb.2011.0938; pmid: 21733893
    13. B. Mennecart, G. Métais, L. Costeur, L. Ginsburg, G. E. Rössner,
    Reassessment of the enigmatic ruminant Miocene genus
    AmphimoschusBourgeois, 1873 (Mammalia, Artiodactyla,
    Pecora).PLOS ONE 16 , e0244661 (2021). doi:10.1371/journal.
    pone.0244661; pmid: 33513144
    14. T. Ganey, J. Ogden, J. Olsen, Development of the giraffe horn
    and its blood supply.Anat. Rec. 227 , 497–507 (1990).
    doi:10.1002/ar.1092270413; pmid: 2393101
    15. M. Danowitz, R. Domalski, N. Solounias, A new species of
    Prolibytherium(Ruminantia, Mammalia) from Pakistan, and the
    functional implications of an atypical atlanto-occipital
    morphology.J. Mamm. Evol. 23 , 201–207 (2016). doi:10.1007/
    s10914-015-9307-8
    16. W. R. Hamilton, The lower Miocene ruminants of Gebel Zelten,
    Libya.Bull. Br. Mus. 21 ,73–150 (1973).
    17. W. R. Hamilton, Fossil giraffes from the Miocene of Africa and a
    revision of the phylogeny of the Giraffoidea.Philos. Trans. R.
    Soc. London Ser. B 283 , 165–229 (1978). doi:10.1098/
    rstb.1978.0019
    18. C. M. Janis, K. M. Scott, The interrelationships of higher
    ruminant families with special emphasis on the members of
    the Cervoidea.Am. Mus. Novit. 2893 ,1–85 (1987).
    19. B. Bohlin,Tsaidamotherium hedini, n. g., n. sp. Ein Einhörniger
    Ovibovine, aus den Tertiären Ablagerungen aus der Gegend
    des Tossun nor, Tsaidam.Geogr. Ann. 17 ,66–74 (1935).
    doi:10.2307/519848
    20. T. Stankowich, T. Caro, Evolution of weaponry in female bovids.
    Proc. Biol. Sci. 276 , 4329–4334 (2009). doi:10.1098/
    rspb.2009.1256; pmid: 19759035
    21. A. M. Lister, Behavioural leads in evolution: Evidence from the
    fossil record.Biol. J. Linn. Soc. Lond. 112 , 315–331 (2014).
    doi:10.1111/bij.12173
    22. J. Zachos, M. Pagani, L. Sloan, E. Thomas, K. Billups, Trends,
    rhythms, and aberrations in global climate 65 Ma to
    present.Science 292 , 686–693 (2001). doi:10.1126/
    science.1059412; pmid: 11326091
    23. J. Sunet al., Late Oligocene–Miocene mid-latitude aridification
    and wind patterns in the Asian interior.Geology 38 , 515– 518
    (2010). doi:10.1130/G30776.1
    24. J. R. Castelló,Bovids of the World: Antelopes, Gazelles, Cattle,
    Goats, Sheep, and Relatives(Princeton Univ. Press, 2016).
    25. N. Solounias,“Family Giraffidae”in The Evolution of
    Artiodactyls, D. R. Prothero, S. E. Foss, Eds. (Johns Hopkins
    Univ. Press, 2007), chap. 21.
    26. J. M. Harris, N. Solounias, D. Geraads,“Giraffoidea”in Cenozoic
    Mammals of Africa, L. Werdelin, W. J. Sanders, Eds. (UC Press,
    2010), chap. 39.
    27. T. E. Cerlinget al., Global vegetation change through the
    Miocene/Pliocene boundary.Nature 389 , 153–158 (1997).
    doi:10.1038/38229
    28. N. Solounias, F. Rivals, G. M. Semprebon, Dietary interpretation
    and paleoecology of herbivores from Pikermi and Samos
    (late Miocene of Greece).Paleobiology 36 , 113–136 (2010).
    doi:10.1666/0094-8373-36.1.113
    29. D. J. Emlen, The evolution of animal weapons.Annu. Rev. Ecol.
    Evol. Syst. 39 , 387–413 (2008). doi:10.1146/annurev.
    ecolsys.39.110707.173502
    30. C. M. Janis, Evolution of horns in ungulates: Ecology and
    paleoecology.Biol. Rev. Camb. Philos. Soc. 57 , 261–318 (1982).
    doi:10.1111/j.1469-185X.1982.tb00370.x
    31. A. B. Bubenik,“Epigenetical, morphological, physiological, and
    behavioral aspects of evolution of horns, pronghorns, and
    antlers”in Horns, Pronghorns, and Antlers: Evolution,
    Morphology, Physiology, and Social Significance, G. A. Bubenik,
    A. B. Bubenik, Eds. (Springer-Verlag, 1990), chap. 1.
    32. A. Drakeet al., Horn and horn core trabecular bone of bighorn
    sheep rams absorbs impact energy and reduces brain cavity
    accelerations during high impact ramming of the skull.Acta
    Biomater. 44 ,41 –50 (2016). doi:10.1016/j.actbio.2016.08.019;
    pmid: 27544811
    33. F. Wu, thesis, Dalian University of Technology (2016).
    34. I. M. Sánchez, M. S. Domingo, J. Morales, The genus
    Hispanomeryx(Mammalia, Ruminantia, Moschidae) and its
    bearing on musk deer phylogeny and systematics.
    Palaeontology 53 , 1023–1047 (2010). doi:10.1111/j.1475-
    4983.2010.00992.x
    35. I. M. Sánchez, J. L. Cantalapiedra, M. Ríos, V. Quiralte,
    J. Morales, Systematics and evolution of the Miocene three-
    horned palaeomerycid ruminants (Mammalia, Cetartiodactyla).
    PLOS ONE 10 , e0143034 (2015). doi:10.1371/journal.
    pone.0143034; pmid: 26630174
    36. A. Hassaninet al., Pattern and timing of diversification of
    Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a
    comprehensive analysis of mitochondrial genomes.C. R. Biol.
    335 ,32–50 (2012). doi:10.1016/j.crvi.2011.11.002;
    pmid: 22226162
    37. P. A. Goloboff, J. S. Farris, K. C. Nixon, TNT, a free program for
    phylogenetic analysis.Cladistics 24 , 774–786 (2008).
    doi:10.1111/j.1096-0031.2008.00217.x
    38. F. Ronquistet al., MrBayes 3.2: Efficient Bayesian phylogenetic
    inference and model choice across a large model space.
    Syst. Biol. 61 , 539–542 (2012). doi:10.1093/sysbio/sys029;
    pmid: 22357727
    39. J. Morales, D. Soria, M. Nieto, P. Pelaez-Campomanes,
    M. Pickford, New data regardingOrangemeryx hendeyi
    Morales et al., 2000, from the type locality, Arrisdrift, Namibia.
    Memoir Geol. Surv. Namibia 19 , 305–344 (2003).
    40. E. R. Lankester,Monograph of the Okapi(British Museum, 1910).
    41. D. S. Kostopoulos, The Late Miocene mammal faunas of the
    Mytilinii Basin, Samos Island, Greece: New collection.
    Beitr. Paläont. 31 , 299–343 (2009).
    42. M. Danowitz, A. Vasilyev, V. Kortlandt, N. Solounias, Fossil
    evidence and stages of elongation of theGiraffa camelopardalis
    neck.R. Soc. Open Sci. 2 , 150393 (2015). doi:10.1098/
    rsos.150393; pmid: 26587249
    43. M. Danowitz, N. Solounias, The cervical osteology ofOkapia
    johnstoniandGiraffa camelopardalis. PLOS ONE 10 , e0136552
    (2015). doi:10.1371/journal.pone.0136552; pmid: 26302156
    44. E. H. Colbert, Siwalik mammals in the American Museum of
    Natural History.Trans. Am. Philos. Soc. 26 ,1–401 (1935).
    doi:10.2307/1005467
    45. E. H. Colbert, A skull and mandible ofGiraffokeryx punjabiensis
    Pilgrim.Am. Mus. Novit. 632 ,1–14 (1933).
    46. B. Bohlin, Die Familie Giraffidae mit Besonderer
    Berücksichtigung der fossilen Formen aus China.Palaeontol.
    Sin. C 4 ,1–178 (1926).
    47. Y. Wang, T. Deng, A 25 m.y. isotopic record of paleodiet and
    environmental change from fossil mammals and paleosols
    from the NE margin of the Tibetan Plateau.Earth Planet.
    Sci. Lett. 236 , 322–338 (2005). doi:10.1016/
    j.epsl.2005.05.006
    48. C. Zhanget al., C 4 expansion in the central Inner Mongolia
    during the latest Miocene and early Pliocene.Earth Planet.
    Sci. Lett. 287 , 311–319 (2009). doi:10.1016/j.epsl.2009.08.025
    49. A. W. Gentry, G. E. Rössner, E. P. J. Heizmann,“Suborder
    Ruminantia”in The Miocene Land Mammals of Europe,
    G. E. Rössner, K. Heissig, Eds. (Verlag Dr. Friedrich Pfeil, 1999),
    chap. 23.
    50. M. Köhler, Boviden des türkischen Miozäns (Känozoikum und
    Braunkohlen der Türkei).Paleontol. Evol. 21 , 133–246 (1987).
    51. M. Mirzaie Ataabadi, R. Bernor, D. S. Kostopoulos,“Recent
    advances in paleobiological research of the Late Miocene
    Maragheh Fauna, northwest Iran”in Neogene Terrestrial Mammalian


Wanget al., Science 376 , eabl8316 (2022) 3 June 2022 9of10


RESEARCH | RESEARCH ARTICLE

Free download pdf