Science - USA (2022-06-03)

(Antfer) #1

  1. I. Cho, M. J. Blaser, The human microbiome: At the interface of
    health and disease.Nat. Rev. Genet. 13 , 260–270 (2012).
    doi:10.1038/nrg3182; pmid: 22411464

  2. A. B. Shreiner, J. Y. Kao, V. B. Young, The gut microbiome in
    health and in disease.Curr. Opin. Gastroenterol. 31 ,69– 75
    (2015). doi:10.1097/MOG.0000000000000139;
    pmid: 25394236

  3. V. K. Ridauraet al., Gut microbiota from twins discordant for
    obesity modulate metabolism in mice.Science 341 , 1241214
    (2013). doi:10.1126/science.1241214; pmid: 24009397

  4. T. Yatsunenkoet al., Human gut microbiome viewed across
    age and geography.Nature 486 , 222–227 (2012).
    doi:10.1038/nature11053; pmid: 22699611

  5. K. Z. Coyte, J. Schluter, K. R. Foster, The ecology of the
    microbiome: Networks, competition, and stability.Science 350 ,
    663 – 666 (2015). doi:10.1126/science.aad2602;
    pmid: 26542567

  6. S. Rakoff-Nahoum, K. R. Foster, L. E. Comstock, The evolution
    of cooperation within the gut microbiota.Nature 533 , 255– 259
    (2016). doi:10.1038/nature17626; pmid: 27111508

  7. M. Poyetet al., A library of human gut bacterial isolates paired
    with longitudinal multiomics data enables mechanistic
    microbiome research.Nat. Med. 25 , 1442–1452 (2019).
    doi:10.1038/s41591-019-0559-3; pmid: 31477907

  8. D. T. Truong, A. Tett, E. Pasolli, C. Huttenhower, N. Segata,
    Microbial strain-level population structure and genetic diversity
    from metagenomes.Genome Res. 27 , 626–638 (2017).
    doi:10.1101/gr.216242.116; pmid: 28167665

  9. S. Zhaoet al., Adaptive Evolution within Gut Microbiomes of
    Healthy People.Cell Host Microbe 25 , 656–667.e8 (2019).
    doi:10.1016/j.chom.2019.03.007; pmid: 31028005

  10. M. Scholzet al., Strain-level microbial epidemiology and
    population genomics from shotgun metagenomics.Nat.
    Methods 13 , 435–438 (2016). doi:10.1038/nmeth.3802;
    pmid: 26999001

  11. C. Yanget al., Fecal IgA Levels Are Determined by Strain-Level
    Differences in Bacteroides ovatus and Are Modifiable by
    Gut Microbiota Manipulation.Cell Host Microbe 27 , 467–475.e6
    (2020). doi:10.1016/j.chom.2020.01.016; pmid: 32075742

  12. J. P. Nataro, J. B. Kaper, Diarrheagenic Escherichia coli.
    Clin. Microbiol. Rev. 11 ,142–201 (1998). doi:10.1128/
    CMR.11.1.142; pmid: 9457432

  13. P. Manrique, M. Dills, M. J. Young, The Human Gut Phage
    Community and Its Implications for Health and Disease.
    Viruses 9 , 141 (2017). doi:10.3390/v9060141; pmid: 28594392

  14. S. Minotet al., Rapid evolution of the human gut virome.
    Proc. Natl. Acad. Sci. U.S.A. 110 , 12450–12455 (2013).
    doi:10.1073/pnas.1300833110; pmid: 23836644

  15. J. R. Huddleston, Horizontal gene transfer in the human
    gastrointestinal tract: Potential spread of antibiotic resistance
    genes.Infect. Drug Resist. 7 , 167–176 (2014). doi:10.2147/
    IDR.S48820; pmid: 25018641

  16. C. S. Smillieet al., Ecology drives a global network of gene
    exchange connecting the human microbiome.Nature 480 ,
    241 – 244 (2011). doi:10.1038/nature10571; pmid: 22037308

  17. Human Microbiome Project Consortium, A framework for
    human microbiome research.Nature 486 , 215–221 (2012).
    doi:10.1038/nature11209; pmid: 22699610

  18. S. Zhao, C. L. Dai, E. D. Evans, Z. Lu, E. J. Alm, Tracking strains
    predicts personal microbiomes and reveals recent adaptive
    evolution.bioRxiv2020.2009.2014.296970 [Preprint] (2020);
    doi:10.1101/2020.09.14.296970

  19. J. Jovelet al., Characterization of the Gut Microbiome Using
    16S or Shotgun Metagenomics.Front. Microbiol. 7 , 459 (2016).
    doi:10.3389/fmicb.2016.00459; pmid: 27148170

  20. H. Xieet al., Shotgun Metagenomics of 250 Adult Twins
    Reveals Genetic and Environmental Impacts on the Gut
    Microbiome.Cell Syst. 3 , 572–584.e3 (2016). doi:10.1016/
    j.cels.2016.10.004; pmid: 27818083

  21. I. L. Brito, E. J. Alm, Tracking Strains in the Microbiome:
    Insights from Metagenomics and Models.Front. Microbiol. 7 ,
    712 (2016). doi:10.3389/fmicb.2016.00712; pmid: 27242733

  22. T. Van Rossum, P. Ferretti, O. M. Maistrenko, P. Bork, Diversity
    within species: Interpreting strains in microbiomes.
    Nat. Rev. Microbiol. 18 , 491–506 (2020). doi:10.1038/s41579-
    020-0368-1; pmid: 32499497

  23. E. L. Moss, D. G. Maghini, A. S. Bhatt, Complete, closed
    bacterial genomes from microbiomes using nanopore
    sequencing.Nat. Biotechnol. 38 , 701–707 (2020).
    doi:10.1038/s41587-020-0422-6; pmid: 32042169

  24. C. M. Singletonet al., Connecting structure to function with the
    recovery of over 1000 high-quality metagenome-assembled
    genomes from activated sludge using long-read sequencing.


Nat. Commun. 12 , 2009 (2021). doi:10.1038/s41467-021-22203-2;
pmid: 33790294


  1. A. Bisharaet al., High-quality genome sequences of uncultured
    microbes by assembly of read clouds.Nat. Biotechnol. 36 ,
    1067 – 1075 (2018). doi:10.1038/nbt.4266; pmid: 30320765

  2. E. Yaffe, D. A. Relman, Tracking microbial evolution in the
    human gut using Hi-C reveals extensive horizontal gene
    transfer, persistence and adaptation.Nat. Microbiol. 5 ,
    343 – 353 (2020). doi:10.1038/s41564-019-0625-0;
    pmid: 31873203

  3. T. Stalder, M. O. Press, S. Sullivan, I. Liachko, E. M. Top, Linking
    the resistome and plasmidome to the microbiome.ISME J. 13 ,
    2437 – 2446 (2019). doi:10.1038/s41396-019-0446-4;
    pmid: 31147603

  4. A. Almeidaet al., A new genomic blueprint of the human gut
    microbiota.Nature 568 , 499–504 (2019). doi:10.1038/
    s41586-019-0965-1; pmid: 30745586

  5. H. P. Browneet al., Culturing of‘unculturable’human
    microbiota reveals novel taxa and extensive sporulation.
    Nature 533 , 543–546 (2016). doi:10.1038/nature17645;
    pmid: 27144353

  6. R. Chijiiwaet al., Single-cell genomics of uncultured bacteria
    reveals dietary fiber responders in the mouse gut microbiota.
    Microbiome 8 , 5 (2020). doi:10.1186/s40168-019-0779-2;
    pmid: 31969191

  7. R. S. Lasken, Single-cell genomic sequencing using Multiple
    Displacement Amplification.Curr. Opin. Microbiol. 10 , 510– 516
    (2007). doi:10.1016/j.mib.2007.08.005; pmid: 17923430

  8. M. G. Pachiadakiet al., Charting the Complexity of the
    Marine Microbiome through Single-Cell Genomics.
    Cell 179 ,1623–1635.e1611 (2019). doi:10.1016/
    j.cell.2019.11.017

  9. C. Rinkeet al., Obtaining genomes from uncultivated
    environmental microorganisms using FACS-based single-cell
    genomics.Nat. Protoc. 9 , 1038–1048 (2014). doi:10.1038/
    nprot.2014.067; pmid: 24722403

  10. L. Xu, I. L. Brito, E. J. Alm, P. C. Blainey, Virtual microfluidics
    for digital quantification and single-cell sequencing.
    Nat. Methods 13 , 759–762 (2016). doi:10.1038/nmeth.3955;
    pmid: 27479330

  11. F. B. Yuet al., Microfluidic-based mini-metagenomics enables
    discovery of novel microbial lineages from complex
    environmental samples.eLife 6 , e26580 (2017). doi:10.7554/
    eLife.26580; pmid: 28678007

  12. M. Džunkováet al., Defining the human gut host-phage network
    through single-cell viral tagging.Nat. Microbiol. 4 ,2192– 2203
    (2019). doi:10.1038/s41564-019-0526-2;pmid: 31384000

  13. B. A. Berghuiset al., Hydrogenotrophic methanogenesis in
    archaeal phylum Verstraetearchaeota reveals the shared
    ancestry of all methanogens.Proc. Natl. Acad. Sci. U.S.A. 116 ,
    5037 – 5044 (2019). doi:10.1073/pnas.1815631116;
    pmid: 30814220

  14. S.-Y. Teh, R. Lin, L.-H. Hung, A. P. Lee, Droplet microfluidics.
    Lab Chip 8 , 198–220 (2008). doi:10.1039/b715524g;
    pmid: 18231657

  15. A. M. Kleinet al., Droplet barcoding for single-cell transcriptomics
    applied to embryonic stem cells.Cell 161 , 1187–1201 (2015).
    doi:10.1016/j.cell.2015.04.044;pmid: 26000487

  16. E. Z. Macoskoet al., Highly Parallel Genome-wide Expression
    Profiling of Individual Cells Using Nanoliter Droplets.Cell 161 ,
    1202 – 1214 (2015). doi:10.1016/j.cell.2015.05.002;
    pmid: 26000488

  17. M. Hosokawa, Y. Nishikawa, M. Kogawa, H. Takeyama,
    Massively parallel whole genome amplification for single-cell
    sequencing using droplet microfluidics.Sci. Rep. 7 , 5199
    (2017). doi:10.1038/s41598-017-05436-4; pmid: 28701744

  18. F. Lan, B. Demaree, N. Ahmed, A. R. Abate, Single-cell
    genome sequencing at ultra-high-throughput with microfluidic
    droplet barcoding.Nat. Biotechnol. 35 , 640–646 (2017).
    doi:10.1038/nbt.3880; pmid: 28553940

  19. K. Ahn, J. Agresti, H. Chong, M. Marquez, D. A. Weitz,
    Electrocoalescence of drops synchronized by size-dependent
    flow in microfluidic channels.Appl. Phys. Lett. 88 , 264105
    (2006). doi:10.1063/1.2218058

  20. L. Blancoet al., Highly efficient DNA synthesis by the phage
    phi 29 DNA polymerase. Symmetrical mode of DNA replication.
    J. Biol. Chem. 264 , 8935–8940 (1989). doi:10.1016/
    S0021-9258(18)81883-X; pmid: 2498321

  21. F. B. Dean, J. R. Nelson, T. L. Giesler, R. S. Lasken, Rapid
    amplification of plasmid and phage DNA using Phi 29
    DNA polymerase and multiply-primed rolling circle
    amplification.Genome Res. 11 , 1095–1099 (2001).
    doi:10.1101/gr.180501; pmid: 11381035
    51. A. Adeyet al., Rapid, low-input, low-bias construction of shotgun
    fragment libraries by high-density in vitro transposition.
    Genome Biol. 11 , R119 (2010). doi:10.1186/gb-2010-11-12-r119;
    pmid: 21143862
    52. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with
    Bowtie 2.Nat. Methods 9 , 357–359 (2012). doi:10.1038/
    nmeth.1923; pmid: 22388286
    53. A. Bankevichet al., SPAdes: A new genome assembly
    algorithm and its applications to single-cell sequencing.
    J. Comput. Biol. 19 , 455–477 (2012). doi:10.1089/
    cmb.2012.0021; pmid: 22506599
    54. B. D. Ondovet al., Mash: Fast genome and metagenome
    distance estimation using MinHash.Genome Biol. 17 ,132
    (2016). doi:10.1186/s13059-016-0997-x; pmid: 27323842
    55. C. Jain, L. M. Rodriguez-R, A. M. Phillippy, K. T. Konstantinidis,
    S. Aluru, High throughput ANI analysis of 90K prokaryotic genomes
    reveals clear species boundaries.Nat. Commun. 9 , 5114 (2018).
    doi:10.1038/s41467-018-07641-9;pmid: 30504855
    56. D. H. Parkset al., Assessing the quality of microbial genomes
    recovered from isolates, single cells, and metagenomes.
    Genome Res. 25 , 1043–1055 (2015). doi:10.1101/
    gr.186072.114; pmid: 25977477
    57. A. Almeidaet al., A unified catalog of 204,938 reference
    genomes from the human gut microbiome.Nat. Biotechnol. 39 ,
    105 – 114 (2021). doi:10.1038/s41587-020-0603-3;pmid: 32690973
    58. E. Pasolliet al., Extensive Unexplored Human Microbiome
    Diversity Revealed by Over 150,000 Genomes from Metagenomes
    Spanning Age, Geography, and Lifestyle.Cell 176 ,649–662.e20
    (2019). doi:10.1016/j.cell.2019.01.001;pmid: 30661755
    59. P.-A. Chaumeil, A. J. Mussig, P. Hugenholtz, D. H. Parks,
    GTDB-Tk: A toolkit to classify genomes with the Genome
    Taxonomy Database.Bioinformatics 36 , 1925–1927 (2019).
    doi:10.1093/bioinformatics/btz848; pmid: 31730192
    60. D. E. Wood, S. L. Salzberg, Kraken: Ultrafast metagenomic
    sequence classification using exact alignments.Genome Biol.
    15 , R46 (2014). doi:10.1186/gb-2014-15-3-r46; pmid: 24580807
    61. N. R. Garud, B. H. Good, O. Hallatschek, K. S. Pollard,
    Evolutionary dynamics of bacteria in the gut microbiome within
    and across hosts.PLOS Biol. 17 , e3000102 (2019).
    doi:10.1371/journal.pbio.3000102; pmid: 30673701
    62. D. Albanese, C. Donati, Strain profiling and epidemiology of
    bacterial species from metagenomic sequencing.Nat.
    Commun. 8 , 2260 (2017). doi:10.1038/s41467-017-02209-5;
    pmid: 29273717
    63. E. Bechtet al., Dimensionality reduction for visualizing
    single-cell data using UMAP.Nat. Biotechnol. 37 ,38– 44
    (2018). doi:10.1038/nbt.4314; pmid: 30531897
    64. J. J. Faithet al., The long-term stability of the human gut
    microbiota.Science 341 , 1237439 (2013). doi:10.1126/
    science.1237439; pmid: 23828941
    65. J.-H. Hehemannet al., Transfer of carbohydrate-active enzymes
    from marine bacteria to Japanese gut microbiota.Nature 464 ,
    908 – 912 (2010). doi:10.1038/nature08937;pmid: 20376150
    66. P. J. Keeling, J. D. Palmer, Horizontal gene transfer in
    eukaryotic evolution.Nat. Rev. Genet. 9 , 605–618 (2008).
    doi:10.1038/nrg2386; pmid: 18591983
    67. M. Groussinet al., Elevated rates of horizontal gene transfer in
    the industrialized human microbiome.Cell 184 , 2053–2067.
    e2018 (2021). doi:10.1016/j.cell.2021.02.052
    68. E. Guerinet al., Biology and Taxonomy of crAss-like
    Bacteriophages, the Most Abundant Virus in the Human Gut.
    Cell Host Microbe 24 , 653–664.e6 (2018). doi:10.1016/
    j.chom.2018.10.002; pmid: 30449316
    69. B. A. Siranosian, F. B. Tamburini, G. Sherlock, A. S. Bhatt,
    Acquisition, transmission and strain diversity of human
    gut-colonizing crAss-like phages.Nat. Commun. 11 , 280
    (2020). doi:10.1038/s41467-019-14103-3; pmid: 31941900
    70. S. D. Ganeshan, Z. Hosseinidoust, Phage Therapy with a Focus
    on the Human Microbiota.Antibiotics (Basel) 8 , 131 (2019).
    doi:10.3390/antibiotics8030131; pmid: 31461990
    71. T. D. S. Sutton, C. Hill, Gut Bacteriophage: Current
    Understanding and Challenges.Front. Endocrinol. 10 , 784
    (2019). doi:10.3389/fendo.2019.00784; pmid: 31849833
    72. A. N. Shkoporovet al., FCrAss001 represents the most
    abundant bacteriophage family in the human gut and infects
    Bacteroides intestinalis.Nat. Commun. 9 , 4781 (2018).
    doi:10.1038/s41467-018-07225-7; pmid: 30429469
    73. J. C. McDonald, G. M. Whitesides, Poly(dimethylsiloxane) as a
    material for fabricating microfluidic devices.Acc. Chem. Res.
    35 , 491–499 (2002). doi:10.1021/ar010110q; pmid: 12118988
    74. R. Zilioniset al., Single-cell barcoding and sequencing using
    droplet microfluidics.Nat. Protoc. 12 ,44–73 (2017).
    doi:10.1038/nprot.2016.154; pmid: 27929523


Zhenget al., Science 376 , eabm1483 (2022) 3 June 2022 12 of 13


RESEARCH | RESEARCH ARTICLE

Free download pdf