Australian Knitting 77
:8JK@E> F==
:8JK@E> FE
GLICN@J<
Glic knf jk`kZ_\j% Lj\ k_\ gf`ek f] k_\
c\]k$_Xe[ e\\[c\ kf c`]k k_\ ]`ijk jk`kZ_
fe k_\ i`^_k$_Xe[ e\\[c\ fm\i k_\
j\Zfe[# Xe[ [ifg `k f]] k_\ e\\[c\%
Glic k_\ e\ok jk`kZ_ fe k_\ c\]k$_Xe[
e\\[c\ jf k_Xk k_\i\ Xi\ knf jk`kZ_\j
fe k_\ i`^_k$_Xe[ e\\[c\ X^X`e# Xe[
i\g\Xk% :fek`el\ `e k_`j dXee\i lek`c Xcc k_\ jk`kZ_\j _Xm\ Y\\e nfib\[
f]] k_\ c\]k$_Xe[ e\\[c\ Xe[ fecp fe\ jk`kZ_ i\dX`ej fe k_\ i`^_k$_Xe[
e\\[c\% J\Zli\ k_`j cXjk jk`kZ_ Xj [\jZi`Y\[ `e ZXjk`e^ f]] be`kn`j\%
BE@KN@J<
Be`k knf jk`kZ_\j% Lj\ k_\ gf`ek f] k_\
c\]k$_Xe[ e\\[c\ kf c`]k k_\ ]`ijk jk`kZ_ fe
k_\ i`^_k$_Xe[ e\\[c\ fm\i k_\ j\Zfe[#
Xe[ [ifg `] f]] k_\ e\\[c\% Be`k k_\ e\ok
jk`kZ_ fe k_\ c\]k$_Xe[ e\\[c\ jf k_Xk k_\i\
Xi\ knf jk`kZ_\j fe k_\ i`^_k$_Xe[ e\\[c\
X^X`e# Xe[ i\g\Xk% :fek`el\ `e k_`j dXee\i
lek`c Xcc k_\ jk`kZ_\j _Xm\ Y\\e nfib\[ f]] k_\ c\]k$_Xe[ e\\[c\ Xe[ fecp
fe\ jk`kZ_ i\dX`ej fe k_\ i`^_k$_Xe[ e\\[c\% :lk k_\ pXie# c\Xm`e^ X kX`c
Xe[ k_i\X[ k_\ pXie k_ifl^_ k_\ cffg Xe[ glcc `k ]`idcp kf ]Xjk\e f]]%
:Xjk`e^ fe `j Zi\Xk`e^ X ifn f] cffgj fe X be`kk`e^
e\\[c\ kf ]fid k_\ YXj\ ifn ]fi pfli be`kk`e^% Fe\ f]
k_\ dfjk gfglcXi d\k_f[j f] ZXjk`e^ fe `j k_\ ZXYc\
ZXjk fe% =fid X jc`gbefk XYflk ),Zd XnXp ]ifd k_\
\e[ f] k_\ pXie%
GcXZ\ k_\ jc`gbefk fe X be`kk`e^ e\\[c\ Xe[ glcc ^\ekcp
kf j\Zli\% ?fc[ k_`j e\\[c\ `e pfli c\]k _Xe[% @ej\ik
k_\ i`^_k$_Xe[ e\\[c\ k_ifl^_ k_\ jc`g befk% GXjj
k_\ pXie fm\i k_\ gf`ek f] k_\ i`^_k$_Xe[ e\\[c\
j\\ ;`X^iXd ( %
Glcc X cffg k_ifl^_ k_\ jc`g befk n`k_ k_\ i`^_k$_Xe[
e\\[c\ j\\ ;`X^iXd ) % GcXZ\ k_`j cffg fe k_\ c\]k$
_Xe[ e\\[c\ Xe[ ^\ekcp glcc k_\ pXie kf j\Zli\ k_\
jk`kZ_% =fi k_\ i\dX`e`e^ ZXjk$fe jk`kZ_\j# `ej\ik k_\
i`^_k$_Xe[ e\\[c\ Y\kn\\e k_\ jc`g befk Xe[ k_\ ]`ijk
jk`kZ_ fe k_\ c\]k$_Xe[ e\\[c\% N`e[ k_\ pXie Xifle[
k_\ gf`ek f] k_\ i`^_k$_Xe[ e\\[c\% ;iXn X cffg
k_ifl^_ Xe[ gcXZ\ k_`jcffg fe k_\ c\]k$_Xe[ e\\[c\%
:fek`el\ `e k_`j dXee\i lek`c pfl _Xm\ ZXjk fe k_\
[\j`i\[ eldY\i f] jk`kZ_\j%
;`X^iXd ( ;`X^iXd )
;X^iXd ( ;
X^iXd ) ;X^iXd ( ;
X^iXd )
Diagram 1
Diagram 2
BE@K JK@K:? GLIC JK@K:?
FeZ\ pfl _Xm\ ZXjk fe# pfl k_\e
be`k `ekf k_\ jk`kZ_\j pfl _Xm\
dX[\ kf ]fid k_\ be`kk\[ ]XYi`Z%
?fc[ k_\ e\\[c\ n`k_ k_\ ZXjk fe
jk`kZ_\j `e pfli c\]k _Xe[# n`k_
k_\ cffj\ pXie Xk k_\ YXZb f]
pfli nfib% @ej\ik k_\ i`^_k$_Xe[
e\\[c\ ]ifd c\]k kf i`^_k k_ifl^_
k_\ ]ifek f] k_\ ]`ijk jk`kZ_ fe k_\
c\]k$_Xe[ e\\[c\ j\\ ;`X^iXd ( %
N`e[ k_\ pXie ]ifd c\]k kf i`^_k
fm\i k_\ gf`ek f] k_\ i`^_k$_Xe[
e\\[c\ j\\ ;`X^iXd ) % ;iXn k_\
pXie k_ifl^_ k_\ jk`kZ_ kf ]fid
X e\n jk`kZ_ fe k_\ i`^_k$_Xe[
e\\[c\% Jc`g k_\ fi`^`eXc jk`kZ_
f]] k_\ c\]k$_Xe[ e\\[c\# b\\g`e^
k_\ e\n jk`kZ_ fe k_\ i`^_k$_Xe[
e\\[c\% Kf be`k X ifn# i\g\Xk
k_\j\ jk\gj lek`c Xcc k_\ jk`kZ_\j
_Xm\ Y\\e kiXej]\ii\[ ]ifd k_\
c\]k$_Xe[ e\\[c\ kf k_\ i`^_k$
_Xe[ e\\[c\% Klie pfli nfib#
kiXej]\ii`e^ k_\ e\\[c\ n`k_ k_\
jk`kZ_\j fe `ekf pfli c\]k _Xe[ kf
nfib k_\ e\okifn%
K_\ glic jk`kZ_ `j YXj`ZXccp k_\
i\m\ij\ f] k_\ be`k jk`kZ_% ?fc[
k_\ e\\[c\ n`k_ k_\ jk`kZ_\j fe
`e pfli c\]k _Xe[# n`k_ k_\ cffj\
pXie Xk k_\ ]ifek f] pfli nfib%
@ej\ik k_\ i`^_k$_Xe[ e\\[c\
]ifd i`^_k kf c\]k `ekf k_\ ]ifek
f] k_\ ]`ijk jk`kZ_ fe k_\ c\]k$
_Xe[ e\\[c\ j\\ ;`X^iXd ( %
N`e[ k_\ pXie ]ifd i`^_k kf
c\]k fm\i k_\ gf`ek f] k_\ i`^_k$
_Xe[ e\\[c\ j\\ ;`X^iXd ) %
;iXn k_\ pXie k_ifl^_ k_\
jk`kZ_ kf ]fid X e\n jk`kZ_ fe
k_\ i`^_k$_Xe[ e\\[c\% Jc`g k_\
fi`^`eXc jk`kZ_ f]] k_\ c\]k$_Xe[
e\\[c\# b\\g`e^ k_\ e\n jk`kZ_
fe k_\ i`^_k$_Xe[ e\\[c\% Kf
glic X ifn# i\g\Xk k_\j\ jk\gj
lek`c Xcc k_\ jk`kZ_\j _Xm\
Y\\e kiXej]\ii\[ ]ifd k_\
c\]k$_Xe[ e\\[c\ kf k_\ i`^_k$
_Xe[ e\\[c\% Klie pfli nfib#
kiXej]\ii`e^ k_\ e\\[c\ n`k_
k_\ jk`kZ_\j fe `ekf pfli c\]k
_Xe[ kf nfib k_\ e\ok ifn%