Bovine tuberculosis

(Barry) #1

Molecular Virulence Mechanisms of Mycobacterium bovis 119


Lee, P.A., Tullman-Ercek, D. and Georgiou, G. (2006) The bacterial twin-arginine translocation pathway.
Annual Review of Microbiology 60, 373–395.
Lee, J.S., Krause, R., Schreiber, J., Mollenkopf, H.J., Kowall, J., et al. (2008) Mutation in the transcrip-
tional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. Cell Host
Microbe 3, 97–103.
Lewis, K.N., Liao, R., Guinn, K.M., Hickey, M.J., Smith, S., et al. (2003) Deletion of RD1 from Mycobac-
terium tuberculosis mimics bacille Calmette-Guérin attenuation. The Journal of Infectious Diseases
187, 117–123.
Lillebaek, T., Dirksen, A., Baess, I., Strunge, B., Thomsen, V.O., et al. (2002) Molecular evidence of endog-
enous reactivation of Mycobacterium tuberculosis after 33 years of latent infection. The Journal of
Infectious Diseases 185, 401–404.
Magnus, K. (1966) Epidemiological basis of tuberculosis eradication. 3. Risk of pulmonary tuberculosis
after human and bovine infection. Bulletin of the World Health Organization 35, 483–508.
Mahairas, G.G., Sabo, P.J., Hickey, M.J., Singh, D.C. and Stover, C.K. (1996) Molecular analysis of genetic
differences between Mycobacterium bovis BCG and virulent M. bovis. Journal of Bacteriology 178,
1274–1282.
Majlessi, L., Brodin, P., Brosch, R., Rojas, M.J., Khun, H., et al. (2005) Influence of ESAT-6 secretion sys-
tem 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host
immune system. Journal of Immunology 174, 3570–3579.
Malaga, W., Constant, P., Euphrasie, D., Cataldi, A., Daffe, M., et al. (2008) Deciphering the genetic bases
of the structural diversity of phenolic glycolipids in strains of the Mycobacterium tuberculosis complex.
The Journal of Biological Chemistry 283, 15177–15184.
Mcdonough, J.A., Hacker, K.E., Flores, A.R., Pavelka Jr., M.S. and Braunstein, M. (2005) The twin-arginine
translocation pathway of Mycobacterium smegmatis is functional and required for the export of myco-
bacterial beta-lactamases. Journal of Bacteriology 187, 7667–7679.
Mostowy, S., Cousins, D., Brinkman, J., Aranaz, A. and Behr, M.A. (2002) Genomic deletions suggest
a phylogeny for the Mycobacterium tuberculosis complex. The Journal of Infectious Diseases 186,
74–80.
Muller, B., Durr, S., Alonso, S., Hattendorf, J., Laisse, C.J., et al. (2013) Zoonotic Mycobacterium bovis-
induced tuberculosis in humans. Emerging Infectious Diseases 19, 899–908.
Mustafa, A.S., Amoudy, H.A., Wiker, H.G., Abal, A.T., Ravn, P., et al. (1998) Comparison of antigen-specific
T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tubercu-
losis. Scandinavian Journal of Immunology 48, 535–543.
Mustafa, T., Wiker, H.G., Morkve, O. and Sviland, L. (2007) Reduced apoptosis and increased inflamma-
tory cytokines in granulomas caused by tuberculous compared to non-tuberculous mycobacteria: role
of MPT64 antigen in apoptosis and immune response. Clinical and Experimental Immunology 150,
105–113.
Nagai, S., Matsumoto, J. and Nagasuga, T. (1981) Specific skin-reactive protein from culture filtrate of
Mycobacterium bovis BCG. Infection and Immunity 31, 1152–1160.
Nagai, S., Miura, K., Tokunaga, T. and Harboe, M. (1986) MPB70, a unique antigenic protein isolated
from the culture filtrate of BCG substrain Tokyo. Developments in Biological Standardization 58(B),
511–516.
Nagai, S., Wiker, H.G., Harboe, M. and Kinomoto, M. (1991) Isolation and partial characterization of
major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infection and Immunity 59,
372–382.
O’hagan, D. (1993) Biosynthesis of fatty acid and polyketide metabolites. Natural Product Reports 10,
593–624.
Overbeek, R., Fonstein, M., D’souza, M., Pusch, G.D. and Maltsev, N. (1999) The use of gene clusters to
infer functional coupling. Proceedings of the National Academy of Sciences of the United States of
America 96, 2896–2901.
Pajon, R., Yero, D., Lage, A., Llanes, A. and Borroto, C.J. (2006) Computational identification of beta-barrel
outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as putative vaccine
candidates. Tuberculosis (Edinburgh) 86, 290–302.
Palmer, M.V. (2013) Mycobacterium bovis: characteristics of wildlife reservoir hosts. Transboundary and
Emerging Diseases 60(1), 1–13.
Parsons, S.D., Drewe, J.A., Gey Van Pittius, N.C., Warren, R.M. and Van Helden, P.D. (2013) Novel cause
of tuberculosis in meerkats, South Africa. Emerging Infectious Diseases 19, 2004–2007.

Free download pdf