Bovine tuberculosis

(Barry) #1

120 A. Smyth and S.V. Gordon


Perez, E., Samper, S., Bordas, Y., Guilhot, C., Gicquel, B., et al. (2001) An essential role for phoP in Myco-
bacterium tuberculosis virulence. Molecular Microbiology 41, 179–187.
Pesciaroli, M., Alvarez, J., Boniotti, M.B., Cagiola, M., Di Marco, V., et al. (2014) Tuberculosis in domestic
animal species. Research in Veterinary Science 97(Suppl), S78–S85.
Pethe, K., Swenson, D.L., Alonso, S., Anderson, J., Wang, C., et al. (2004) Isolation of Mycobacterium
tuberculosis mutants defective in the arrest of phagosome maturation. Proceedings of the National
Academy of Sciences of the United States of America 101, 13642–13647.
Pym, A.S., Brodin, P., Majlessi, L., Brosch, R., Demangel, C., et al. (2003) Recombinant BCG exporting
ESAT-6 confers enhanced protection against tuberculosis. Nature Medicine 9, 533–539.
Quadri, L.E. (2014) Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Critical
Reviews in Biochemistry and Molecular Biology 49, 179–211.
Raynaud, C., Guilhot, C., Rauzier, J., Bordat, Y., Pelicic, V., et al. (2002a) Phospholipases C are involved in
the virulence of Mycobacterium tuberculosis. Molecular Microbiology 45, 203–217.
Raynaud, C., Papavinasasundaram, K.G., Speight, R.A., Springer, B., Sander, P., et al. (2002b) The func-
tions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Molecular Microbiology 46,
191–201.
Reed, M.B., Domenech, P., Manca, C., Su, H., Barczak, A.K., et al. (2004) A glycolipid of hypervirulent
tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87.
Renshaw, P.S., Panagiotidou, P., Whelan, A., Gordon, S.V., Hewinson, R.G., et al. (2002) Conclusive evi-
dence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10
form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and
the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. The Journal of Biological
Chemistry 277, 21598–21603.
Rhodes, S.G., Gavier-Widen, D., Buddle, B.M., Whelan, A.O., Singh, M., et al. (2000) Antigen specificity in
experimental bovine tuberculosis. Infection and Immunity 68, 2573–2578.
Roche, P.W., Triccas, J.A., Avery, D.T., Fifis, T., Billman-Jacobe, H., et al. (1994) Differential T cell responses
to mycobacteria-secreted proteins distinguish vaccination with bacille Calmette-Guérin from infection
with Mycobacterium tuberculosis. The Journal of Infectious Diseases 170, 1326–1330.
Rousseau, C., Winter, N., Pivert, E., Bordat, Y., Neyrolles, O., et al. (2004) Production of phthiocerol dimy-
cocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen interme-
diates produced by macrophages and modulates the early immune response to infection. Cellular
Microbiology 6, 277–287.
Said-Salim, B., Mostowy, S., Kristof, A.S. and Behr, M.A. (2006) Mutations in Mycobacterium tuberculosis
Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Myco-
bacterium bovis. Molecular Microbiology 62, 1251–1263.
Saint-Joanis, B., Demangel, C., Jackson, M., Brodin, P., Marsollier, L., et al. (2006) Inactivation of Rv2525c,
a substrate of the twin arginine translocation (Tat) system of Mycobacterium tuberculosis, increases
beta-lactam susceptibility and virulence. Journal of Bacteriology 188, 6669–6679.
Sampson, S.L. (2011) Mycobacterial PE/PPE proteins at the host-pathogen interface. Clinical and Devel-
opmental Immunology 2011, 497203.
Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A. et al., (2003) Transcriptional Adaptation
of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. The
Journal of Experimental Medicine 198, 693–704.
Schneider, J.S., Sklar, J.G. and Glickman, M.S. (2014) The rip1 protease of Mycobacterium tuberculosis
controls the SigD regulon. Journal of Bacteriology 196, 2638–2645.
Senaratne, R.H., Sidders, B., Sequeira, P., Saunders, G., Dunphy, K., et al. (2008) Mycobacterium tubercu-
losis strains disrupted in mce3 and mce4 operons are attenuated in mice. Journal of Medical Micro-
biology 57, 164–170.
Serafini, A., Boldrin, F., Palu, G. and Manganelli, R. (2009) Characterization of a Mycobacterium tubercu-
losis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. Journal of Bacteriology 191,
6340–6344.
Sirakova, T.D., Dubey, V.S., Cynamon, M.H. and Kolattukudy, P.E. (2003) Attenuation of Mycobacterium
tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes defi-
ciency in dimycocerosyl phthiocerol synthesis. Journal of Bacteriology 185, 2999–3008.
Skuce R.A. and McDowell, S. (2011) Bovine tuberculosis (TB): a review of cattle-to-cattle transmission, risk
factors and susceptibility. Agri-food and Biosciences Institute, Belfast, Northern Ireland, UK. Available

Free download pdf