Science - USA (2022-06-10)

(Maropa) #1

accommodate the passage of small cytosolic
domains of inner nuclear membrane inte-
gral membrane proteins (INM-IMPs), sug-
gesting the mechanism by which inner ring
constriction upon energy depletion might
interfere with the path of diffusion of these
proteins between outer and inner nuclear
envelope membranes ( 78 – 80 ). It remains to
be established whether the extent of inner ring
dilation observed by current cryo-ET recon-
structions of the human andS. cerevisiae
NPCs capture the maximally achievable lateral
channel dimensions. However, the previous
observations that karyopherin-mediated ac-
tive INM-IMP transport requires unstructured
tethers spanning the distance between the
nuclear envelope and the central transport
channel is consistent with the observed lateral
channel dimensions (fig. S83C) ( 81 – 85 ). Tak-
ing advantage of the composite NPC struc-
tures, future studies are expected to elucidate
the nucleocytoplasmic translocation pathways
and the impact of inner ring dilation for in-
dividual INM-IMPs. Similarly, the transloca-
tion of perinuclear domains on the opposite
side of the nuclear envelope is expected to be
limited by the luminal ring that encircles the
NPC midplane formed by Pom152/POM210
Ig-like domains ( 37 , 47 , 86 ).
Finally, the capacity of the NPC to exist in
dilated and constricted states dependent on
tension imparted by the surrounding nuclear
envelope portrays the NPC as the cell’slargest
mechanosensitive channel, with implications
in cellular energy–state sensing and transport
of transcriptional regulators in response to
mechanical stress on the cell ( 46 , 87 ). The con-
striction and dilation of the inner ring may not
only affect the distribution and local concen-
tration of FG repeats in the central transport
channel, a determinant of karyopherin-mediated
transport efficiency ( 88 ) but also sterically mod-
ulate the flux of INM-IMPs and large cargos
such as preribosome or messenger ribonucleo-
protein particles (mRNPs). Future studies will
have to establish the causal links between the
transmission of tension from the nuclear envel-
ope to the NPC, the dilation of its inner ring, and
mechanisms by which dilation and constriction
may modulate nucleocytoplasmic transport.
Our results illuminate the elusive linker-
scaffold molecular interactions that main-
tain the integrity of the NPC, providing a
comprehensive characterization of a final
major aspect of the NPC symmetric core. Build-
ing on this roadmap, future studies can address
NPC assembly and disassembly mechanisms,
the emergence of NPC polarity and attachment
of the asymmetric cytoplasmic filaments and
nuclear basket to the symmetric core, mecha-
nisms of NPC-associated diseases, and mecha-
nisms of NPC dilation and constriction along
with their implications in nucleocytoplasmic
transport.


Methods summary
Comprehensive materials and methods are
presented in the supplementary materials.
Briefly, the source of materials and reagents is
listed in table S1. Summaries of bacterial ex-
pression constructs and conditions (table S2),
protein purification procedures (table S3), an-
alytical SEC-MALS protein interaction analyses
(table S4), and ITC binding affinity measure-
ments (table S5) are provided. Experimental
details of x-ray crystallography and single-
particle cryo-EM structure determination pro-
cedures are described, including summaries of
crystallization and cryo-protection conditions
(table S6), as well as data collection, process-
ing, and refinement statistics (tables S7 to S12).
S. cerevisiaeconstructs (table S13) and strains
(table S14), as well as the experimental details
of the viability and growth assay, subcellular
nup localization analysis, 60S preribosome
export assay, and mRNA export fluorescence
in situ hybridization (FISH) assay, which es-
tablish the physiological relevance of the bio-
chemical and structural findings, are provided.
Details of the incremental quantitative dock-
ing procedures for nup and nup complex
crystal and single-particle cryo-EM structures
into ~12- and ~23-Å cryo-ET maps of the intact
human NPC (constricted state) ( 38 , 47 ), as well
as into an ~37-Å in situ cryo-ET map of the
human NPC ( 45 )andan~25-Åinsitumapof
theS. cerevisiaeNPC ( 36 ) (dilated states), are
provided. Inventories of nup and nup complex
experimental structures used to generate
the near-atomic composite structures of the
S. cerevisiae(table S15) and human (table
S16) NPCs are provided.

REFERENCES AND NOTES


  1. A. Hoelz, E. W. Debler, G. Blobel, The structure of the nuclear
    pore complex.Annu. Rev. Biochem. 80 , 613–643 (2011).
    doi:10.1146/annurev-biochem-060109-151030;pmid: 21495847

  2. D. H. Lin, A. Hoelz, The structure of the nuclear pore complex
    (an update).Annu. Rev. Biochem. 88 , 725–783 (2019).
    doi:10.1146/annurev-biochem-062917-011901; pmid: 30883195

  3. B. Hampoelz, A. Andres-Pons, P. Kastritis, M. Beck, Structure
    and assembly of the nuclear pore complex.Annu. Rev. Biophys.
    48 , 515–536 (2019). doi:10.1146/annurev-biophys-052118-
    115308 ; pmid: 30943044

  4. K. E. Knockenhauer, T. U. Schwartz, The nuclear pore complex
    as a flexible and dynamic gate.Cell 164 , 1162–1171 (2016).
    doi:10.1016/j.cell.2016.01.034; pmid: 26967283

  5. A. Köhler, E. Hurt, Gene regulation by nucleoporins and links to
    cancer.Mol. Cell 38 ,6–15 (2010). doi:10.1016/j.molcel.2010.01.040;
    pmid: 20385085

  6. M. L. Yarbrough, M. A. Mata, R. Sakthivel, B. M. Fontoura,
    Viral subversion of nucleocytoplasmic trafficking.Traffic 15 ,
    127 – 140 (2014). doi:10.1111/tra.12137; pmid: 24289861

  7. P. L. Paine, L. C. Moore, S. B. Horowitz, Nuclear envelope
    permeability.Nature 254 ,109–114 (1975). doi:10.1038/254109a0;
    pmid: 1117994

  8. W. M. Bonner, Protein migration into nuclei. I. Frog oocyte
    nuclei in vivo accumulate microinjected histones, allow entry to
    small proteins, and exclude large proteins.J. Cell Biol. 64 ,
    421 – 430 (1975). doi:10.1083/jcb.64.2.421; pmid: 46868

  9. B. L. Timneyet al., Simple rules for passive diffusion through
    the nuclear pore complex.J. Cell Biol. 215 ,57–76 (2016).
    doi:10.1083/jcb.201601004; pmid: 27697925

  10. Y. M. Chook, K. E. Süel, Nuclear import by karyopherin-bs:
    Recognition and inhibition.Biochim. Biophys. Acta 1813 ,
    1593 – 1606 (2011). doi:10.1016/j.bbamcr.2010.10.014;
    pmid: 21029754
    11. A. Cook, F. Bono, M. Jinek, E. Conti, Structural biology of
    nucleocytoplasmic transport.Annu. Rev. Biochem. 76 , 647– 671
    (2007). doi:10.1146/annurev.biochem.76.052705.161529;
    pmid: 17506639
    12. S. Milleset al., Plasticity of an ultrafast interaction between
    nucleoporins and nuclear transport receptors.Cell 163 ,734– 745
    (2015). doi:10.1016/j.cell.2015.09.047;pmid: 26456112
    13. R. A. Pumroy, G. Cingolani, Diversification of importin-a
    isoforms in cellular trafficking and disease states.Biochem. J.
    466 ,13 –28 (2015). doi:10.1042/BJ20141186; pmid: 25656054
    14. A. E. Hodelet al., The three-dimensional structure of the
    autoproteolytic, nuclear pore-targeting domain of the human
    nucleoporin Nup98.Mol. Cell 10 , 347–358 (2002).
    doi:10.1016/S1097-2765(02)00589-0; pmid: 12191480
    15. I. C. Berke, T. Boehmer, G. Blobel, T. U. Schwartz, Structural
    and functional analysis of Nup133 domains reveals modular
    building blocks of the nuclear pore complex.J. Cell Biol. 167 ,
    591 – 597 (2004). doi:10.1083/jcb.200408109; pmid: 15557116
    16. K. C. Hsia, P. Stavropoulos, G. Blobel, A. Hoelz, Architecture of
    a coat for the nuclear pore membrane.Cell 131 , 1313– 1326
    (2007). doi:10.1016/j.cell.2007.11.038; pmid: 18160040
    17. T. Boehmer, S. Jeudy, I. C. Berke, T. U. Schwartz, Structural
    and functional studies of Nup107/Nup133 interaction and
    its implications for the architecture of the nuclear pore
    complex.Mol. Cell 30 , 721–731 (2008). doi:10.1016/
    j.molcel.2008.04.022; pmid: 18570875
    18. S. G. Brohawn, N. C. Leksa, E. D. Spear, K. R. Rajashankar,
    T. U. Schwartz, Structural evidence for common ancestry of
    the nuclear pore complex and vesicle coats.Science 322 ,
    1369 – 1373 (2008). doi:10.1126/science.1165886;
    pmid: 18974315
    19. E. W. Debleret al., A fence-like coat for the nuclear pore
    membrane.Mol. Cell 32 , 815–826 (2008). doi:10.1016/
    j.molcel.2008.12.001; pmid: 19111661
    20. S. G. Brohawn, T. U. Schwartz, Molecular architecture of the
    Nup84-Nup145C-Sec13 edge element in the nuclear pore
    complex lattice.Nat. Struct. Mol. Biol. 16 , 1173–1177 (2009).
    doi:10.1038/nsmb.1713; pmid: 19855394
    21. N. C. Leksa, S. G. Brohawn, T. U. Schwartz, The structure of
    the scaffold nucleoporin Nup120 reveals a new and unexpected
    domain architecture.Structure 17 , 1082–1091 (2009).
    doi:10.1016/j.str.2009.06.003; pmid: 19576787
    22. V. Nagyet al., Structure of a trimeric nucleoporin complex
    reveals alternate oligomerization states.Proc. Natl. Acad.
    Sci. U.S.A. 106 , 17693–17698 (2009). doi:10.1073/
    pnas.0909373106; pmid: 19805193
    23. H. S. Seoet al., Structural and functional analysis of Nup120
    suggests ring formation of the Nup84 complex.Proc. Natl.
    Acad. Sci. U.S.A. 106 , 14281–14286 (2009). doi:10.1073/
    pnas.0907453106; pmid: 19706512
    24. J. R. R. Whittle, T. U. Schwartz, Architectural nucleoporins
    Nup157/170 and Nup133 are structurally related and descend
    from a second ancestral element.J. Biol. Chem. 284 ,
    28442 – 28452 (2009). doi:10.1074/jbc.M109.023580;
    pmid: 19674973
    25. S. Bilokapic, T. U. Schwartz, Molecular basis for Nup37
    and ELY5/ELYS recruitment to the nuclear pore complex.
    Proc. Natl. Acad. Sci. U.S.A. 109 , 15241–15246 (2012).
    doi:10.1073/pnas.1205151109; pmid: 22955883
    26. S. Bilokapic, T. U. Schwartz, Structural and functional studies
    of the 252 kDa nucleoporin ELYS reveal distinct roles for its
    three tethered domains.Structure 21 , 572–580 (2013).
    doi:10.1016/j.str.2013.02.006; pmid: 23499022
    27. K. Kelley, K. E. Knockenhauer, G. Kabachinski, T. U. Schwartz,
    Atomic structure of the Y complex of the nuclear pore.
    Nat. Struct. Mol. Biol. 22 , 425–431 (2015). doi:10.1038/
    nsmb.2998; pmid: 25822992
    28. T. Stuweet al., Architecture of the fungal nuclear pore inner
    ring complex.Science 350 ,56–64 (2015). doi:10.1126/
    science.aac9176; pmid: 26316600
    29. T. Stuweet al., Architecture of the nuclear pore complex coat.
    Science 347 ,1148–1152 (2015). doi:10.1126/science.aaa4136;
    pmid: 25745173
    30. C. Xuet al., Crystal structure of human nuclear pore complex
    component NUP43.FEBS Lett. 589 , 3247–3253 (2015).
    doi:10.1016/j.febslet.2015.09.008; pmid: 26391640
    31. A. Hoelz, J. S. Glavy, M. Beck, Toward the atomic structure
    of the nuclear pore complex: When top down meets bottom up.
    Nat. Struct. Mol. Biol. 23 , 624–630 (2016). doi:10.1038/
    nsmb.3244; pmid: 27273515
    32. K. H. Buiet al., Integrated structural analysis of the human
    nuclear pore complex scaffold.Cell 155 , 1233–1243 (2013).
    doi:10.1016/j.cell.2013.10.055; pmid: 24315095


Petrovicet al., Science 376 , eabm9798 (2022) 10 June 2022 16 of 18


RESEARCH | STRUCTURE OF THE NUCLEAR PORE
Free download pdf