Science - USA (2022-06-10)

(Maropa) #1

  1. J. Fischer, R. Teimer, S. Amlacher, R. Kunze, E. Hurt,
    Linker Nups connect the nuclear pore complex inner ring
    with the outer ring and transport channel.Nat. Struct. Mol.
    Biol. 22 , 774–781 (2015). doi:10.1038/nsmb.3084;
    pmid: 26344569

  2. J. Kosinskiet al., Molecular architecture of the inner
    ring scaffold of the human nuclear pore complex.Science
    352 , 363–365 (2016). doi:10.1126/science.aaf0643;
    pmid: 27081072

  3. D. H. Linet al., Architecture of the symmetric core of the
    nuclear pore.Science 352 , aaf1015 (2016). doi:10.1126/
    science.aaf1015; pmid: 27081075

  4. M. Allegrettiet al., In-cell architecture of the nuclear pore and
    snapshots of its turnover.Nature 586 , 796–800 (2020).
    doi:10.1038/s41586-020-2670-5; pmid: 32879490

  5. S. J. Kimet al., Integrative structure and functional anatomy of
    a nuclear pore complex.Nature 555 , 475–482 (2018).
    doi:10.1038/nature26003; pmid: 29539637

  6. A. von Appenet al., In situ structural analysis of the human
    nuclear pore complex.Nature 526 ,140–143 (2015).
    doi:10.1038/nature15381; pmid: 26416747

  7. S. A. Nordeen, D. L. Turman, T. U. Schwartz, Yeast Nup84-
    Nup133 complex structure details flexibility and reveals
    conservation of the membrane anchoring ALPS motif.
    Nat. Commun. 11 , 6060 (2020). doi:10.1038/s41467-020-
    19885-5; pmid: 33247142

  8. S. Amlacheret al., Insight into structure and assembly of the
    nuclear pore complex by utilizing the genome of a eukaryotic
    thermophile.Cell 146 , 277–289 (2011). doi:10.1016/
    j.cell.2011.06.039; pmid: 21784248

  9. T. Stuwe, D. H. Lin, L. N. Collins, E. Hurt, A. Hoelz, Evidence for
    an evolutionary relationship between the large adaptor
    nucleoporin Nup192 and karyopherins.Proc. Natl. Acad.
    Sci. U.S.A. 111 , 2530–2535 (2014). doi:10.1073/
    pnas.1311081111; pmid: 24505056

  10. H. Chug, S. Trakhanov, B. B. Hülsmann, T. Pleiner, D. Görlich,
    Crystal structure of the metazoan Nup62•Nup58•Nup54
    nucleoporin complex.Science 350 , 106–110 (2015).
    doi:10.1126/science.aac7420; pmid: 26292704

  11. S. Mosalagantiet al., In situ architecture of the algal nuclear
    pore complex.Nat. Commun. 9 , 2361 (2018). doi:10.1038/
    s41467-018-04739-y; pmid: 29915221

  12. A. P. Schulleret al., The cellular environment shapes the
    nuclear pore complex architecture.Nature 598 , 667– 671
    (2021). doi:10.1038/s41586-021-03985-3; pmid: 34646014

  13. V. Zilaet al., Cone-shaped HIV-1 capsids are transported
    through intact nuclear pores.Cell 184 , 1032–1046.e18 (2021).
    doi:10.1016/j.cell.2021.01.025; pmid: 33571428

  14. C. E. Zimmerliet al., Nuclear pores dilate and constrict in
    cellulo.Science 374 , eabd9776 (2021). doi:10.1126/science.
    abd9776; pmid: 34762489

  15. S. Mosalagantiet al., AI-based structure prediction empowers
    integrative structural analysis of human nuclear pores.Science
    376 , eabm9506 (2022). doi:10.1126/science.abm9506

  16. P. Sampathkumaret al., Structure, dynamics, evolution, and
    function of a major scaffold component in the nuclear pore
    complex.Structure 21 , 560–571 (2013). doi:10.1016/
    j.str.2013.02.005; pmid: 23499021

  17. K. R. Andersenet al., Scaffold nucleoporins Nup188 and
    Nup192 share structural and functional properties with nuclear
    transport receptors.eLife 2 , e00745 (2013). doi:10.7554/
    eLife.00745; pmid: 23795296

  18. S. M. Baileret al., Nup116p and nup100p are interchangeable
    through a conserved motif which constitutes a docking site for
    the mRNA transport factor gle2p.EMBO J. 17 , 1107– 1119
    (1998). doi:10.1093/emboj/17.4.1107; pmid: 9463388

  19. K. J. Ryan, S. R. Wente, Isolation and characterization of new
    Saccharomyces cerevisiae mutants perturbed in nuclear pore
    complex assembly.BMC Genet. 3 , 17 (2002). doi:10.1186/
    1471-2156-3-17; pmid: 12215173

  20. S. S. Patel, B. J. Belmont, J. M. Sante, M. F. Rexach, Natively
    unfolded nucleoporins gate protein diffusion across the nuclear
    pore complex.Cell 129 ,83–96 (2007). doi:10.1016/
    j.cell.2007.01.044; pmid: 17418788

  21. K. Yoshida, H. S. Seo, E. W. Debler, G. Blobel, A. Hoelz,
    Structural and functional analysis of an essential nucleoporin
    heterotrimer on the cytoplasmic face of the nuclear pore
    complex.Proc. Natl. Acad. Sci. U.S.A. 108 , 16571–16576 (2011).
    doi:10.1073/pnas.1112846108; pmid: 21930948

  22. A. de Bruyn Kops, C. Guthrie, Identification of the novel
    Nup188-brr7allele in a screen for cold-sensitive mRNA export
    mutants inSaccharomyces cerevisiae. G3 8 , 2991– 3003
    (2018). doi:10.1534/g3.118.200447; pmid: 30021831
    55. M. Miao, K. J. Ryan, S. R. Wente, The integral membrane
    protein Pom34p functionally links nucleoporin subcomplexes.
    Genetics 172 , 1441–1457 (2006). doi:10.1534/
    genetics.105.052068; pmid: 16361228
    56. U. Nehrbass, M. P. Rout, S. Maguire, G. Blobel, R. W. Wozniak,
    The yeast nucleoporin Nup188p interacts genetically and
    physically with the core structures of the nuclear pore
    complex.J. Cell Biol. 133 , 1153–1162 (1996). doi:10.1083/
    jcb.133.6.1153; pmid: 8682855
    57. M. Marelli, J. D. Aitchison, R. W. Wozniak, Specific binding of
    the karyopherin Kap121p to a subunit of the nuclear pore
    complex containing Nup53p, Nup59p, and Nup170p.J. Cell
    Biol. 143 , 1813–1830 (1998). doi:10.1083/jcb.143.7.1813;
    pmid: 9864357
    58. N. Schraderet al., Structural basis of the nic96 subcomplex
    organization in the nuclear pore channel.Mol. Cell 29 ,46– 55
    (2008). doi:10.1016/j.molcel.2007.10.022; pmid: 18206968
    59. S. Jeudy, T. U. Schwartz, Crystal structure of nucleoporin
    Nic96 reveals a novel, intricate helical domain architecture.
    J. Biol. Chem. 282 , 34904–34912 (2007). doi:10.1074/
    jbc.M705479200; pmid: 17897938
    60. C. J. Bleyet al., Architecture of the cytoplasmic face of the
    nuclear pore.Science 376 , eabm9129 (2022). doi:10.1126/
    science.abm9129
    61. D. H. Linet al., Structural and functional analysis of mRNA
    export regulation by the nuclear pore complex.Nat. Commun.
    9 , 2319 (2018). doi:10.1038/s41467-018-04459-3;
    pmid: 29899397
    62. G. Drinet al., A general amphipathic alpha-helical motif for
    sensing membrane curvature.Nat. Struct. Mol. Biol. 14 ,
    138 – 146 (2007). doi:10.1038/nsmb1194; pmid: 17220896
    63. N. Eisenhardt, J. Redolfi, W. Antonin, Interaction of Nup53 with
    Ndc1 and Nup155 is required for nuclear pore complex
    assembly.J. Cell Sci. 127 , 908–921 (2014). pmid: 24363447
    64. E. Onischenko, L. H. Stanton, A. S. Madrid, T. Kieselbach,
    K. Weis, Role of the Ndc1 interaction network in yeast nuclear
    pore complex assembly and maintenance.J. Cell Biol. 185 ,
    475 – 491 (2009). doi:10.1083/jcb.200810030
    pmid: 19414609
    65. A. Oriet al., Cell type-specific nuclear pores: A case in point
    for context-dependent stoichiometry of molecular machines.
    Mol. Syst. Biol. 9 , 648 (2013). doi:10.1038/msb.2013.4;
    pmid: 23511206
    66. E. R. Griffis, N. Altan, J. Lippincott-Schwartz, M. A. Powers,
    Nup98 is a mobile nucleoporin with transcription-dependent
    dynamics.Mol. Biol. Cell 13 , 1282–1297 (2002). doi:10.1091/
    mbc.01-11-0538; pmid: 11950939
    67. G. Rabut, V. Doye, J. Ellenberg, Mapping the dynamic
    organization of the nuclear pore complex inside single living
    cells.Nat. Cell Biol. 6 , 1114–1121 (2004). doi:10.1038/ncb1184;
    pmid: 15502822
    68. N. P. Allen, L. Huang, A. Burlingame, M. Rexach, Proteomic
    analysis of nucleoporin interacting proteins.J. Biol. Chem.
    276 , 29268–29274 (2001). doi:10.1074/jbc.M102629200;
    pmid: 11387327
    69. E. Onischenkoet al., Natively unfolded FG repeats stabilize the
    structure of the nuclear pore complex.Cell 171 , 904–917.e19
    (2017). doi:10.1016/j.cell.2017.09.033; pmid: 29033133
    70. A. Levchenko, Allovalency: A case of molecular entanglement.
    Curr. Biol. 13 , R876–R878 (2003). doi:10.1016/
    j.cub.2003.10.049; pmid: 14614843
    71. J. G. Olsen, K. Teilum, B. B. Kragelund, Behaviour of intrinsically
    disordered proteins in protein-protein complexes with an emphasis
    on fuzziness.Cell. Mol. Life Sci. 74 ,3175–3183 (2017).
    doi:10.1007/s00018-017-2560-7;pmid: 28597296
    72. E. Laurellet al., Phosphorylation of Nup98 by multiple kinases
    is crucial for NPC disassembly during mitotic entry.Cell 144 ,
    539 – 550 (2011). doi:10.1016/j.cell.2011.01.012;pmid: 21335236
    73. M. I. Linderet al., Mitotic disassembly of nuclear pore
    complexes involves CDK1- and PLK1-mediated phosphorylation
    of key interconnecting nucleoporins.Dev. Cell 43 ,141–156.e7
    (2017). doi:10.1016/j.devcel.2017.08.020; pmid: 29065306
    74. S. M. Gough, C. I. Slape, P. D. Aplan, NUP98 gene fusions and
    hematopoietic malignancies: Common themes and new
    biologic insights.Blood 118 , 6247–6257 (2011). doi:10.1182/
    blood-2011-07-328880; pmid: 21948299
    75. S. G. Regmiet al., The nuclear pore complex consists of two
    independent scaffolds. bioRxiv 2020.11.13.381947 [Preprint]
    (2020);https://doi.org/10.1101/2020.11.13.381947.
    76. D. A. Braunet al., Mutations in nuclear pore genesNUP93,
    NUP205andXPO5cause steroid-resistant nephrotic
    syndrome.Nat. Genet. 48 , 457–465 (2016). doi:10.1038/
    ng.3512; pmid: 26878725
    77. A. M. Muiret al., Bi-allelic loss-of-function variants inNUP188cause
    a recognizable syndrome characterized by neurologic, ocular, and
    cardiac abnormalities.Am.J.Hum.Genet. 106 ,623–631 (2020).
    doi:10.1016/j.ajhg.2020.03.009;pmid: 32275884
    78. R. Ungricht, M. Klann, P. Horvath, U. Kutay, Diffusion and
    retention are major determinants of protein targeting to the
    inner nuclear membrane.J. Cell Biol. 209 , 687–704 (2015).
    doi:10.1083/jcb.201409127; pmid: 26056139
    79. T. Ohba, E. C. Schirmer, T. Nishimoto, L. Gerace, Energy- and
    temperature-dependent transport of integral proteins to the
    inner nuclear membrane via the nuclear pore.J. Cell Biol. 167 ,
    1051 – 1062 (2004). doi:10.1083/jcb.200409149;
    pmid: 15611332
    80. N. Zulegeret al., System analysis shows distinct mechanisms
    and common principles of nuclear envelope protein dynamics.
    J. Cell Biol. 193 ,109–123 (2011). doi:10.1083/jcb.201009068;
    pmid: 21444689
    81. M. C. King, C. P. Lusk, G. Blobel, Karyopherin-mediated import of
    integral inner nuclear membrane proteins.Nature 442 , 1003– 1007
    (2006). doi:10.1038/nature05075;pmid: 16929305
    82. A. C. Meinemaet al., Long unfolded linkers facilitate membrane
    protein import through the nuclear pore complex.Science 333 ,
    90 – 93 (2011). doi:10.1126/science.1205741;pmid: 21659568
    83. R. K. Lokareddyet al., Distinctive properties of the nuclear
    localization signals of inner nuclear membrane proteins Heh1
    and Heh2.Structure 23 , 1305–1316 (2015). doi:10.1016/
    j.str.2015.04.017; pmid: 26051712
    84. P. Popken, A. Ghavami, P. R. Onck, B. Poolman, L. M. Veenhoff,
    Size-dependent leak of soluble and membrane proteins through
    the yeast nuclear pore complex.Mol. Biol. Cell 26 , 1386– 1394
    (2015). doi:10.1091/mbc.E14-07-1175;pmid: 25631821
    85. A. Kraltet al., Conservation of inner nuclear membrane
    targeting sequences in mammalian Pom121 and yeast Heh2
    membrane proteins.Mol. Biol. Cell 26 , 3301–3312 (2015).
    doi:10.1091/mbc.e15-03-0184; pmid: 26179916
    86. Y. Zhanget al., Molecular architecture of the luminal ring of the
    Xenopus laevisnuclear pore complex.Cell Res. 30 , 532– 540
    (2020). doi:10.1038/s41422-020-0320-y;pmid: 32367042
    87. A. Elosegui-Artolaet al., Force triggers YAP nuclear entry by
    regulating transport across nuclear pores.Cell 171 , 1397–1410.
    e14 (2017). doi:10.1016/j.cell.2017.10.008; pmid: 29107331
    88. S. Frey, D. Görlich, A saturated FG-repeat hydrogel can
    reproduce the permeability properties of nuclear pore
    complexes.Cell 130 , 512–523 (2007). doi:10.1016/
    j.cell.2007.06.024; pmid: 17693259
    89. S. Petrovicet al., Architecture of the linker-scaffold
    in the nuclear pore, Version 1.0. CaltechDATA (2021);
    https://doi.org/10.22002/D1.2208.


ACKNOWLEDGMENTS
We thank A. Patke for critical reading and editing of the manuscript
and insightful discussions; M. Beck for sharing an ~12-Å cryo-ET
reconstruction of the intact human HeLa cell NPC before
publication [Electron Microscopy Data Bank (EMDB) ID EMD-
14322]; E. Hurt, S. Wente, B. Fountura, D. Baltimore, and the
Kazusa DNA Research Institute for providing material; and F. Liang,
A. Lyons, A. Tang, and J. Thai for experimental support. We are
grateful to D. Borek, J. Kollman, G. Lander, D. Lin, S. Saladi,
and members of the Hoelz lab for insightful discussion and expertise.
We acknowledge J. Kaiser, the scientific staff of the Stanford
Synchrotron Radiation Lightsource (SSRL) beamline 12-2, and the
National Institute of General Medical Sciences and National Cancer
Institute Structural Biology Facility (GM/CA) at the Advanced
Photon Source (APS) for their support with x-ray diffraction
measurements; S. Chen and A. Malyutin of the Beckman Institute
Resource Center for Transmission Electron Microscopy at the
California Institute of Technology (Caltech) for support with
cryo-EM microscopy imaging; J. Myers and the scientific staff of
the Pacific Northwest CryoEM Center (PNCC) at the Oregon Health
and Science University (OHSU) and the Environmental Molecular
Sciences Laboratory (EMSL) for their support with cryo-EM
imaging; and the Cold Spring Harbor Laboratory (CSHL) cryo-EM
course, the CSHL X-ray Methods in Structural Biology course, and
the Michigan Life Science Institute cryo-EM workshop and their
instructors M. Cianfrocco, W. Furey, G. Gilliland, J. Kollman,
G. Lander, M. Ohi, J. Pflugrath, A. McPherson, and M. Vos, along
with all the course staff and lecturers for valuable expert training.
Funding:The Molecular Observatory at Caltech is supported
by D. and J. Voet, the Gordon and Betty Moore Foundation, and the
Beckman Institute. The Center for Molecular Medicine at Caltech
is supported by the Gordon and Betty Moore Foundation. The
operations at the SSRL and APS are supported by the US
Department of Energy (DOE) and the National Institutes of Health

Petrovicet al., Science 376 , eabm9798 (2022) 10 June 2022 17 of 18


RESEARCH | STRUCTURE OF THE NUCLEAR PORE

Free download pdf