Science - USA (2022-06-10)

(Maropa) #1

through a single recrystallization (40 g isolated,
dr >20:1, er >99:1).
The isolated products of these Michael CIDT
reactions can be transformed to value-added
products in subsequent steps that capitalize
on the embedded functionality without com-
promising the integrity of the extant asym-
metric centers (Fig. 5, B and C) ( 21 ). Ketone
additions using organocerium reagents ( 22 , 23 )
delivered a variety of tertiary alcohols containing
synthetically useful functional handles, includ-
ing the alkyl (5a), vinyl (5b), allyl (5c), alkynyl
(5d), and aryl (5e) groups, in good to excellent
diastereoselectivity. Secondaryb-hydroxy amide
5f was obtained in 95% yield as a single di-
astereomer through titanium (IV)-mediated
diastereoselective reduction ( 24 ). Pyrrolidine
5g was synthesized in a single step in excel-
lent diastereoselectivity through Zn-mediated
reductive cyclization ( 25 ), and from that point
the amide could be converted to its derived
tertiary amine5h in moderate yield.
This work establishes a foundation for
crystallization-induced diastereomer trans-
formations operating on two configuration-
ally labile asymmetric centers, enabled in this
instance by the Dixon chiral iminophosphorane
Brønsted superbase. The results of the pre-
sent study suggest that expanded opportu-
nities may exist for the productive merger
of divergent, partially selective first-stage
asymmetric catalysis with crystallization-
driven second-stage stereoconvergence. A
key to the generalization and future growth
of such platforms that capitalize on their


myriad benefits will be the development of
robust predictive tools based on, among other
things, analysis of crystal packing and ma-
chine learning.

REFERENCES AND NOTES


  1. V. Farina, J. T. Reeves, C. H. Senanayake, J. J. Song,Chem.
    Rev. 106 , 2734–2793 (2006).

  2. J. Blacker, C. E. Headley, inGreen Chemistry in the
    Pharmaceutical Industry, A. S. Wells, M. T. Williams, Eds.
    (Wiley, 2010); pp. 269–288.

  3. M. D. Eastgate, M. A. Schmidt, K. R. Fandrick,Nat. Rev. Chem.
    1 , 0016 (2017).

  4. O. Méndez-Lucio, J. L. Medina-Franco,Drug Discov. Today 22 ,
    120 – 126 (2017).

  5. S. Cailleet al., J. Org. Chem. 84 , 4583–4603 (2019).

  6. S. Caille,Science 364 , 635 (2019).

  7. K. Lovato, P. S. Fier, K. M. Maloney,Nat. Rev. Chem. 5 ,
    546 – 563 (2021).

  8. P. J. Walsh, M. C. Kozlowski,Fundamentals of Asymmetric
    Catalysis(University Science Books, 2009).

  9. K. B. Hansenet al., J. Am. Chem. Soc. 131 , 8798– 8804
    (2009).

  10. G. P. Howell,Org. Process Res. Dev. 16 , 1258–1272 (2012).

  11. D. J. Kirwan, C. J. Orella, inHandbook of Industrial
    Crystallization, A. S. Myerson, Ed. (Elsevier, ed. 2, 2002);
    pp. 249–266.

  12. A. Kolarovič, P. Jakubec,Adv. Synth. Catal. 363 , 4110– 4158
    (2021).

  13. K. M. J. Brands, A. J. Davies,Chem. Rev. 106 , 2711– 2733
    (2006).

  14. E. Reyes, U. Uria, J. L. Vicario, L. Carrillo,Org. React. 90 ,1– 898
    (2016).

  15. H. T. Openshaw, N. Whittaker,J. Chem. Soc. 1461 – 1471 (1963).

  16. P. J. Pyeet al.,Chemistry 8 , 1372–1376 (2002).

  17. M. C. Prieto-Ramírezet al., Adv. Synth. Catal. 360 , 4362– 4371
    (2018).

  18. M. Formica, D. Rozsar, G. Su, A. J. M. Farley, D. J. Dixon,
    Acc. Chem. Res. 53 , 2235–2247 (2020).

  19. S. Nahm, S. M. Weinreb,Tetrahedron Lett. 22 , 3815– 3818
    (1981).

  20. S. P. Lathrop, T. Rovis,J. Am. Chem. Soc. 131 , 13628– 13630
    (2009).
    21. D. A. Evans, M. D. Ennis, T. Le, N. Mandel, G. Mandel,J. Am.
    Chem. Soc. 106 , 1154–1156 (1984).
    22. T. Imamotoet al., J. Org. Chem. 49 , 3904–3912 (1984).
    23. T. Imamoto, Y. Sugiura, N. Takiyama,Tetrahedron Lett. 25 ,
    4233 – 4236 (1984).
    24. G. Bartoliet al., Tetrahedron Lett. 42 , 8811–8815 (2001).
    25. Z. X. Jiaet al., Chemistry 18 , 12958–12961 (2012).


ACKNOWLEDGMENTS
We thank B. Ehrmann and D. Weatherspoon (UNC Department of
Chemistry Mass Spectrometry Core Laboratory) for assistance
with mass spectrometry analysis; M. ter Horst (UNC Department of
Chemistry NMR Core Laboratory) for assistance with NMR
analysis; and H. King (UNC Department of Chemistry) for
experimental contributions.Funding:This work was supported by
the National Institute of General Medical Sciences, National
Institutes of Health (grant R35 GM 118055 to J.S.J. and grant F31
GM137697 to P.d.J.C.).Author contributions:P.d.J.C. and J.S.J.
conceived the study. P.d.J.C., W.R.C., and J.S.J. designed,
implemented, and analyzed the experiments. C.H.C. performed the
x-ray diffraction studies. P.d.J.C., W.R.C., and J.S.J. wrote the
manuscript.Competing interests:The authors declare no
competing interests.Data and materials availability:
Experimental procedures and characterization data are available in
the supplementary materials. The crystallographic data for this
paper can be obtained free of charge from the Cambridge
Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/
cif) using the following accession codes: CCDC 2089311, 2128977,
2144952-2144957, 2145282, 2149929-2149931, 2154042-2154043,
2168282, and 2168284.License information:Copyright © 2022
the authors, some rights reserved; exclusive licensee American
Association for the Advancement of Science. No claim to original
US government works. https://www.science.org/about/science-
licenses-journal-article-reuse

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abo5048
Materials and Methods
Figs. S1 to S8
Tables S1 to S19
NMR Spectra
References ( 26 – 50 )
Submitted 7 February 2022; accepted 6 May 2022
10.1126/science.abo5048

de Jesús Cruzet al., Science 376 , 1224–1230 (2022) 10 June 2022 7of7


RESEARCH | REPORT

Free download pdf