Science - USA (2022-06-10)

(Maropa) #1

functional orthologs of Nup93 and the Alpha-
Fold model. The EM maps also allow identifi-
cation of protein-protein interfaces mediated by
Nup93 (figs. S11, S12, and S14).
With one Nup93-ACE1 assigned to the bridge
domain and two Nup93a5 helices identified to
be inserted into the CTD of Nup205 molecules,
we investigated whether a second copy of
Nup93-ACE1 was present within the CR sub-
unit. The current molecular model left a chunk
of unassigned density spanning the Nup107-I
from one subunit and Nup205-O from the
adjacent subunit that adopts a similar shape as
those of the bridge domain. Local refinements
focusing on this chunk of density revealed that
a second copy of Nup93-ACE1 was indeed
present in the CR subunit. Direct docking of
the model of Nup93-ACE1-O into this region
resulted in a nearly perfect match (fig. S10F).
Modeling and structural analyses of other
nucleoporins were facilitated by sequence
alignment ( 55 , 56 ) of functional orthologs of
the structurally defined CR components and
AlphaFold-predicted models. Overall, the final
model of the CR subunit includes the inner and
outer Y complexes, two Nup205 molecules, five
Nup358 clamps, two Nup93 molecules, and one
copy each of Nup88, Nup98/X, and Nup155.
This model includes 19,037 amino acids in 749
a-helices and 380b-strands (tables S2 and S3).
The final model was refined using Phenix ( 50 )
with secondary structure restraints and vali-
dated through examination of the Molprobity
scores and statistics of the Ramachandran plots
( 57 ) (table S1). Together with the EM density
map, this model allows structural analysis of
Nup205 (Fig. 3), Nup93 (Fig. 4 and figs. S10, S11,
S12,andS14),andNup358(Fig.5andfigs.S13
and S14) clamps. In addition, the final model
provides a basis for the identification of inter-
subunit protein-protein interfaces (fig. S15) and
structural comparisons among Y complexes
from various species (fig. S16) and between
individual components of the CR (fig. S17 and
table S4).
The figures for structures and maps were
generated using Pymol,Chimera, or ChimeraX
( 51 , 58 ). Sequence alignments were done in
Clustal Omega ( 55 )andESPript3.0( 56 ).


REFERENCES AND NOTES



  1. H. B. Schmidt, D. Görlich, Transport selectivity of nuclear
    pores, phase separation, and membraneless organelles.Trends
    Biochem. Sci. 41 ,46–61 (2016). doi:10.1016/j.tibs.2015.11.001;
    pmid: 26705895

  2. R. Ungricht, U. Kutay, Mechanisms and functions of nuclear
    envelope remodelling.Nat. Rev. Mol. Cell Biol. 18 , 229– 245
    (2017). doi:10.1038/nrm.2016.153; pmid: 28120913

  3. P. De Magistris, W. Antonin, The dynamic nature of the nuclear
    envelope.Curr. Biol. 28 , R487–R497 (2018). doi:10.1016/
    j.cub.2018.01.073; pmid: 29689232

  4. J. Fernandez-Martinez, M. P. Rout, A jumbo problem: Mapping
    the structure and functions of the nuclear pore complex.
    Curr. Opin. Cell Biol. 24 ,92–99 (2012). doi:10.1016/
    j.ceb.2011.12.013; pmid: 22321828

  5. T. U. Schwartz, The structure inventory of the nuclear pore
    complex.J. Mol. Biol. 428 (10 Pt A), 1986–2000 (2016).
    doi:10.1016/j.jmb.2016.03.015; pmid: 27016207
    6. M. Beck, E. Hurt, The nuclear pore complex: Understanding its
    function through structural insight.Nat. Rev. Mol. Cell Biol. 18 ,
    73 – 89 (2017). doi:10.1038/nrm.2016.147; pmid: 27999437
    7. D. H. Lin, A. Hoelz, The structure of the nuclear pore complex
    (an update).Annu. Rev. Biochem. 88 , 725–783 (2019).
    doi:10.1146/annurev-biochem-062917-011901;
    pmid: 30883195
    8. J. Fernandez-Martinez, M. P. Rout, One ring to rule them all?
    Structural and functional diversity in the nuclear pore complex.
    Trends Biochem. Sci. 46 , 595–607 (2021). doi:10.1016/
    j.tibs.2021.01.003; pmid: 33563541
    9. Y. Zhanget al., Molecular architecture of the luminal ring of the
    Xenopus laevisnuclear pore complex.Cell Res. 30 , 532– 540
    (2020). doi:10.1038/s41422-020-0320-y; pmid: 32367042
    10. A. von Appenet al., In situ structural analysis of the human
    nuclear pore complex.Nature 526 ,140–143 (2015).
    doi:10.1038/nature15381; pmid: 26416747
    11. K. H. Buiet al., Integrated structural analysis of the human
    nuclear pore complex scaffold.Cell 155 , 1233–1243 (2013).
    doi:10.1016/j.cell.2013.10.055; pmid: 24315095
    12. D. H. Linet al., Architecture of the symmetric core of the
    nuclear pore.Science 352 , aaf1015 (2016). doi:10.1126/
    science.aaf1015; pmid: 27081075
    13. M. Lutzmann, R. Kunze, A. Buerer, U. Aebi, E. Hurt, Modular
    self-assembly of a Y-shaped multiprotein complex from seven
    nucleoporins.EMBO J. 21 , 387–397 (2002). doi:10.1093/
    emboj/21.3.387; pmid: 11823431
    14. G. Huanget al., Structure of the cytoplasmic ring of the
    Xenopus laevisnuclear pore complex by cryo-electron
    microscopy single particle analysis.Cell Res. 30 ,
    520 – 531 (2020). doi:10.1038/s41422-020-0319-4;
    pmid: 32376910
    15. J. Jumperet al., Highly accurate protein structure prediction
    with AlphaFold.Nature 596 , 583–589 (2021). doi:10.1038/
    s41586-021-03819-2; pmid: 34265844
    16. T. Boehmer, S. Jeudy, I. C. Berke, T. U. Schwartz, Structural
    and functional studies of Nup107/Nup133 interaction and
    its implications for the architecture of the nuclear pore
    complex.Mol. Cell 30 , 721–731 (2008). doi:10.1016/
    j.molcel.2008.04.022; pmid: 18570875
    17. M. Kampmann, G. Blobel, Three-dimensional structure and
    flexibility of a membrane-coating module of the nuclear pore
    complex.Nat. Struct. Mol. Biol. 16 , 782–788 (2009).
    doi:10.1038/nsmb.1618; pmid: 19503077
    18. T. Stuweet al., Nuclear pores. Architecture of the nuclear pore
    complex coat.Science 347 ,1148–1152 (2015). doi:10.1126/
    science.aaa4136; pmid: 25745173
    19. K. Kelley, K. E. Knockenhauer, G. Kabachinski, T. U. Schwartz,
    Atomic structure of the Y complex of the nuclear pore.
    Nat. Struct. Mol. Biol. 22 , 425–431 (2015). doi:10.1038/
    nsmb.2998; pmid: 25822992
    20. S. G. Brohawn, N. C. Leksa, E. D. Spear, K. R. Rajashankar,
    T. U. Schwartz, Structural evidence for common ancestry of
    the nuclear pore complex and vesicle coats.Science 322 ,
    1369 – 1373 (2008). doi:10.1126/science.1165886;
    pmid: 18974315
    21. T. Stuweet al., Architecture of the fungal nuclear pore inner
    ring complex.Science 350 ,56–64 (2015). doi:10.1126/
    science.aac9176; pmid: 26316600
    22. G. Huanget al., Cryo-EM structure of the inner ring from
    theXenopus laevisnuclear pore complex.Cell Res. 32 ,
    451 – 460 (2022). doi:10.1038/s41422-022-00633-x;
    pmid: 35301439
    23. G. Huanget al., Cryo-EM structure of the nuclear ring
    fromXenopus laevisnuclear pore complex.Cell Res. 32 ,
    349 – 358 (2022). doi:10.1038/s41422-021-00610-w;
    pmid: 35177819
    24. C. W. Akeyet al., Comprehensive structure and functional
    adaptations of the yeast nuclear pore complex.Cell(2021).
    pmid: 34982960
    25. Z. Liet al., Near-atomic structure of the inner ring of the
    Saccharomyces cerevisiaenuclear pore complex.Cell Res. 32 ,
    437 – 450 (2022). doi:10.1038/s41422-022-00632-y;
    pmid: 35301440
    26. A. Hoelz, E. W. Debler, G. Blobel, The structure of the nuclear
    pore complex.Annu. Rev. Biochem. 80 , 613–643 (2011).
    doi:10.1146/annurev-biochem-060109-151030;pmid: 21495847
    27. M. P. Routet al., The yeast nuclear pore complex:
    Composition, architecture, and transport mechanism.
    J. Cell Biol. 148 , 635–652 (2000). doi:10.1083/jcb.148.4.635;
    pmid: 10684247
    28. J. M. Cronshaw, A. N. Krutchinsky, W. Zhang, B. T. Chait,
    M. J. Matunis, Proteomic analysis of the mammalian nuclear


pore complex.J. Cell Biol. 158 , 915–927 (2002). doi:10.1083/
jcb.200206106; pmid: 12196509


  1. A. Oriet al., Cell type-specific nuclear pores: A case in point for
    context-dependent stoichiometry of molecular machines.
    Mol. Syst. Biol. 9 , 648 (2013). doi:10.1038/msb.2013.4;
    pmid: 23511206

  2. J. Kosinskiet al., Molecular architecture of the inner ring
    scaffold of the human nuclear pore complex.Science 352 ,
    363 – 365 (2016). doi:10.1126/science.aaf0643;
    pmid: 27081072

  3. S. J. Kimet al., Integrative structure and functional anatomy of
    a nuclear pore complex.Nature 555 , 475–482 (2018).
    doi:10.1038/nature26003; pmid: 29539637

  4. J. S. Glavyet al., Cell-cycle-dependent phosphorylation of the
    nuclear pore Nup107-160 subcomplex.Proc. Natl. Acad.
    Sci. U.S.A. 104 , 3811–3816 (2007). doi:10.1073/
    pnas.0700058104; pmid: 17360435

  5. M. Allegrettiet al., In-cell architecture of the nuclear pore and
    snapshots of its turnover.Nature 586 , 796–800 (2020).
    doi:10.1038/s41586-020-2670-5; pmid: 32879490

  6. F. Zhaoet al., Mutations in NUP160 are implicated in steroid-
    resistant nephrotic syndrome.J. Am. Soc. Nephrol. 30 ,
    840 – 853 (2019). doi:10.1681/ASN.2018080786;
    pmid: 30910934

  7. V. Nagyet al., Structure of a trimeric nucleoporin complex
    reveals alternate oligomerization states.Proc. Natl. Acad.
    Sci. U.S.A. 106 , 17693–17698 (2009). doi:10.1073/
    pnas.0909373106; pmid: 19805193

  8. L. Taiet al., 8 Å structure of the outer rings of theXenopus
    laevisnuclear pore complex obtained by cryo-EM and AI.
    Protein Cell(2022). doi:10.1007/s13238-021-00895-y;
    pmid: 35015240

  9. S. Mosalagantiet al., Artificial intelligence reveals nuclear pore
    complexity. bioRxiv 465776 [Preprint] (2021). doi:10.1101/
    2021.10.26.465776

  10. K. R. Andersenet al., Scaffold nucleoporins Nup188 and
    Nup192 share structural and functional properties with nuclear
    transport receptors.eLife 2 , e00745 (2013). doi:10.7554/
    eLife.00745; pmid: 23795296

  11. S. A. Kassubeet al., Crystal structure of the N-terminal domain
    of Nup358/RanBP2.J. Mol. Biol. 423 , 752–765 (2012).
    doi:10.1016/j.jmb.2012.08.026; pmid: 22959972

  12. Y. Z. Tanet al., Addressing preferred specimen orientation in
    single-particle cryo-EM through tilting.Nat. Methods 14 ,
    793 – 796 (2017). doi:10.1038/nmeth.4347; pmid: 28671674

  13. S. Q. Zhenget al., MotionCor2: Anisotropic correction of beam-
    induced motion for improved cryo-electron microscopy.
    Nat. Methods 14 , 331–332 (2017). doi:10.1038/nmeth.4193;
    pmid: 28250466

  14. K. Zhang, Gctf: Real-time CTF determination and correction.
    J. Struct. Biol. 193 ,1–12 (2016). doi:10.1016/j.jsb.2015.11.003;
    pmid: 26592709

  15. J. Zivanov, T. Nakane, S. H. W. Scheres, A Bayesian
    approach to beam-induced motion correction in cryo-EM
    single-particle analysis.IUCrJ 6 ,5–17 (2019). doi:10.1107/
    S205225251801463X; pmid: 30713699

  16. J. Zivanovet al., New tools for automated high-resolution cryo-
    EM structure determination in RELION-3.eLife 7 , e42166
    (2018). doi:10.7554/eLife.42166; pmid: 30412051

  17. D. Tegunov, P. Cramer, Real-time cryo-electron microscopy
    data preprocessing with Warp.Nat. Methods 16 ,1146– 1152
    (2019). doi:10.1038/s41592-019-0580-y; pmid: 31591575

  18. A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker,
    cryoSPARC: Algorithms for rapid unsupervised cryo-EM
    structure determination.Nat. Methods 14 , 290–296 (2017).
    doi:10.1038/nmeth.4169; pmid: 28165473

  19. T. Bepleret al., Positive-unlabeled convolutional neural
    networks for particle picking in cryo-electron micrographs.
    Nat. Methods 16 , 1153–1160 (2019). doi:10.1038/s41592-019-
    0575-8; pmid: 31591578

  20. D. Asarnow, E. Palovcak, Y. Cheng,“UCSF pyem v0.5,”Zenodo
    (2019); doi:10.5281/zenodo.3576630

  21. X. Gonget al., Structural Insights into the Niemann-Pick C1
    (NPC1)-Mediated Cholesterol Transfer and Ebola Infection.
    Cell 165 , 1467–1478 (2016). doi:10.1016/j.cell.2016.05.022;
    pmid: 27238017

  22. P. D. Adamset al., PHENIX: A comprehensive Python-based
    system for macromolecular structure solution.Acta Crystallogr.
    D Biol. Crystallogr. 66 , 213–221 (2010). doi:10.1107/
    S0907444909052925; pmid: 20124702

  23. E. F. Pettersenet al., UCSF Chimera—A visualization system
    for exploratory research and analysis.J. Comput. Chem. 25 ,
    1605 – 1612 (2004). doi:10.1002/jcc.20084;pmid: 15264254


Zhuet al., Science 376 , eabl8280 (2022) 10 June 2022 9of10


RESEARCH | STRUCTURE OF THE NUCLEAR PORE

Free download pdf