Science - USA (2022-06-10)

(Maropa) #1
635 – 652 (2000). doi:10.1083/jcb.148.4.635;
pmid: 10684247


  1. J. M. Cronshaw, A. N. Krutchinsky, W. Zhang, B. T. Chait,
    M. J. Matunis, Proteomic analysis of the mammalian nuclear
    pore complex.J. Cell Biol. 158 , 915–927 (2002).
    doi:10.1083/jcb.200206106; pmid: 12196509

  2. J. Joseph, M. Dasso, The nucleoporin Nup358 associates with
    and regulates interphase microtubules.FEBS Lett. 582 ,
    190 – 196 (2008). doi:10.1016/j.febslet.2007.11.087;
    pmid: 18070602

  3. S. A. Kassubeet al., Crystal structure of the N-terminal
    domain of Nup358/RanBP2.J. Mol. Biol. 423 , 752– 765
    (2012). doi:10.1016/j.jmb.2012.08.026; pmid: 22959972

  4. M. Paduchet al., Generating conformation-specific synthetic
    antibodies to trap proteins in selected functional states.
    Methods 60 ,3–14 (2013). doi:10.1016/j.ymeth.2012.12.010;
    pmid: 23280336

  5. L. Holm, Using Dali for Protein Structure Comparison.
    Methods Mol. Biol. 2112 ,29–42 (2020). doi:10.1007/
    978-1-0716-0270-6_3; pmid: 32006276

  6. B. Hampoelzet al., Nuclear Pores Assemble from
    Nucleoporin Condensates During Oogenesis.Cell 179 ,
    671 – 686.e17 (2019). doi:10.1016/j.cell.2019.09.022;
    pmid: 31626769

  7. N. R. Yaseen, G. Blobel, Two distinct classes of Ran-binding
    sites on the nucleoporin Nup-358.Proc. Natl. Acad. Sci. U.S.A.
    96 ,5516–5521 (1999). doi:10.1073/pnas.96.10.5516;
    pmid: 10318915

  8. S. Nakielny, S. Shaikh, B. Burke, G. Dreyfuss, Nup153 is
    an M9-containing mobile nucleoporin with a novel
    Ran-binding domain.EMBO J. 18 , 1982–1995 (1999).
    doi:10.1093/emboj/18.7.1982; pmid: 10202161

  9. T. Guanet al., Nup50, a nucleoplasmically oriented
    nucleoporin with a role in nuclear protein export.
    Mol. Cell. Biol. 20 , 5619–5630 (2000). doi:10.1128/
    MCB.20.15.5619-5630.2000; pmid: 10891499

  10. M. M. Higa, S. L. Alam, W. I. Sundquist, K. S. Ullman,
    Molecular characterization of the Ran-binding zinc finger
    domain of Nup153.J. Biol. Chem. 282 , 17090–17100 (2007).
    doi:10.1074/jbc.M702715200; pmid: 17426026

  11. N. Schraderet al., The crystal structure of the Ran-
    Nup153ZnF2 complex: A general Ran docking site at the
    nuclear pore complex.Structure 16 , 1116–1125 (2008).
    doi:10.1016/j.str.2008.03.014; pmid: 18611384

  12. J. R. Partridge, T. U. Schwartz, Crystallographic and
    biochemical analysis of the Ran-binding zinc finger domain.
    J. Mol. Biol. 391 , 375–389 (2009). doi:10.1016/
    j.jmb.2009.06.011; pmid: 19505478

  13. A. Oriet al., Cell type-specific nuclear pores: A case in point
    for context-dependent stoichiometry of molecular machines.
    Mol. Syst. Biol. 9 , 648 (2013). doi:10.1038/msb.2013.4;
    pmid: 23511206

  14. D. Salina, P. Enarson, J. B. Rattner, B. Burke, Nup358
    integrates nuclear envelope breakdown with kinetochore
    assembly.J. Cell Biol. 162 , 991–1001 (2003). doi:10.1083/
    jcb.200304080; pmid: 12963708

  15. P. D. Pereiraet al., Quantification of cell cycle kinetics by EdU
    (5-ethynyl-2′-deoxyuridine)-coupled-fluorescence-intensity
    analysis.Oncotarget 8 , 40514–40532 (2017). doi:10.18632/
    oncotarget.17121; pmid: 28465489

  16. K. Mahadevanet al., RanBP2/Nup358 potentiates the
    translation of a subset of mRNAs encoding secretory
    proteins.PLOS Biol. 11 , e1001545 (2013). doi:10.1371/
    journal.pbio.1001545; pmid: 23630457

  17. C. V. Heathet al., Nuclear pore complex clustering and
    nuclear accumulation of poly(A)+ RNA associated with
    mutation of the Saccharomyces cerevisiae RAT2/NUP120
    gene.J. Cell Biol. 131 , 1677–1697 (1995). doi:10.1083/
    jcb.131.6.1677; pmid: 8557737
    91. D. E. Neilsonet al., Infection-triggered familial or recurrent
    cases of acute necrotizing encephalopathy caused by
    mutations in a component of the nuclear pore, RANBP2.
    Am. J. Hum. Genet. 84 ,44–51 (2009). doi:10.1016/
    j.ajhg.2008.12.009; pmid: 19118815
    92. K. Sellet al., Variable clinical course in acute necrotizing
    encephalopathy and identification of a novel RANBP2
    mutation.Brain Dev. 38 , 777–780 (2016). doi:10.1016/
    j.braindev.2016.02.007; pmid: 26923722
    93. E. Bonninet al., Biallelic mutations in nucleoporin NUP88
    cause lethal fetal akinesia deformation sequence.
    PLOS Genet. 14 , e1007845 (2018). doi:10.1371/journal.
    pgen.1007845; pmid: 30543681
    94. S. G. Regmiet al., The Nuclear Pore Complex consists of
    two independent scaffolds. bioRxiv 2020.11.13.381947
    [Preprint] (2020); doi:10.1101/2020.11.13.381947
    95. V. Zilaet al., Cone-shaped HIV-1 capsids are transported
    through intact nuclear pores.Cell 184 , 1032–1046.e18
    (2021). doi:10.1016/j.cell.2021.01.025; pmid: 33571428
    96. A. P. Schulleret al., The cellular environment shapes the
    nuclear pore complex architecture.Nature 598 , 667– 671
    (2021). doi:10.1038/s41586-021-03985-3;
    pmid: 34646014
    97. M. Hamed, B. Caspar, S. A. Port, R. H. Kehlenbach, A nuclear
    export sequence promotes CRM1-dependent targeting
    of the nucleoporin Nup214 to the nuclear pore complex.
    J. Cell Sci. 134 , jcs258095 (2021). doi:10.1242/jcs.258095;
    pmid: 33589493
    98. T. C. Waltheret al., The cytoplasmic filaments of the nuclear
    pore complex are dispensable for selective nuclear protein
    import.J. Cell Biol. 158 ,63–77 (2002). doi:10.1083/
    jcb.200202088; pmid: 12105182
    99. E. Onischenkoet al., Natively Unfolded FG Repeats Stabilize
    the Structure of the Nuclear Pore Complex.Cell 171 ,
    904 – 917.e19 (2017). doi:10.1016/j.cell.2017.09.033;
    pmid: 29033133
    100. L. Miorinet al., SARS-CoV-2 Orf6 hijacks Nup98 to block
    STAT nuclear import and antagonize interferon signaling.
    Proc. Natl. Acad. Sci. U.S.A. 117 , 28344–28354 (2020).
    doi:10.1073/pnas.2016650117; pmid: 33097660
    101. C. J. Bleyet al., Architecture of the cytoplasmic face of the
    nuclear pore, Version 1.0, CaltechDATA (2021).
    doi:10.22002/D1.2209


ACKNOWLEDGMENTS
We thank the members of the Hoelz laboratory, M. Guttman, and
S. Shan for insightful discussions; A. Cohen, J. Chou, R. Gulati,
Y. Jeon, H. Margolis, E. Stuwe, T. Stuwe, and J. Thai for experimental
support; M. Beck for sharing the ~12-Å cryo-ET reconstruction
of the intact human NPC prior to publication; and V. Doye, U. Kutay,
E. Hurt, and I. Mattaj for providing material. We acknowledge
J. Kaiser and the scientific staff of the Stanford Synchrotron Radiation
Laboratory (SSRL) Beamline 12-2 and the National Institute of
General Medical Sciences and National Cancer Institute Structural
Biology Facility (GM/CA) at the Advanced Photon Source (APS)
for their support with x-ray diffraction measurements.Funding:
The Molecular Observatory at the California Institute of Technology
(Caltech) is supported by Donald and Judith Voet, the Gordon
and Betty Moore Foundation, and the Beckman Institute. The
operations at the SSRL and APS are supported by the US
Department of Energy and the National Institutes of Health (NIH).
GM/CA has been funded in whole or in part with federal funds from
the National Cancer Institute (ACB-12002) and the National
Institute of General Medical Sciences (AGM-12006). S.P. and
F.M.H. were supported by a PhD fellowship of the Boehringer
Ingelheim Fonds. D.H.L. was supported by an NIH Research Service
Award (5 T32 GM07616) and Amgen Graduate Fellowship
through the Caltech-Amgen Research Collaboration. S.C., S.G.R.,
and M.D. were supported by National Institute of Child Health and

Human Development Division of Intramural Research funding
ZIAHD001902 and ZIAHD008954. A.A.K. was supported by NIH
grants R01-GM117372 and P50-GM082545. A.H. was supported by
a Camille-Dreyfus Teacher Scholar Award (TC-15-082) and NIH
grants R01-GM117360 and R01-GM111461 and is an Investigator of
the Heritage Medical Research Institute (HMRI-15-09-01) and a
Faculty Scholar of the Howard Hughes Medical Institute (55108534).
Author contributions:A.H. conceived and coordinated the
study. C.J.B., S.N., G.W.M., S.P., A.T.G., X.L., S.M., S.H., F.M.H.,
D.H.L., B.B., A.W.T., E.J.R., A.R.C., S.C., S.G.R., T.A.S., C.A.J., M.D.,
A.P., A.F.P., A.A.K., and A.H. designed the research. C.J.B., S.N.,
G.W.M., S.P., A.T.G., X.L., S.M., S.H., F.M.H., D.H.L., B.B., A.W.T.,
E.J.R., A.R.C., S.C., S.G.R., T.A.S., C.A.J., and A.H. performed
the research. C.J.B., S.N., G.W.M., S.P., A.T.G., X.L., S.M., S.H.,
F.M.H., D.H.L., B.B., A.W.T., E.J.R., A.R.C., S.C., S.G.R., T.A.S.,
C.A.J., M.D., A.P., A.F.P., A.A.K., and A.H. analyzed the data.
S.M. and A.A.K. (synthetic antibodies) and S.C., S.G.R., and M.D.
(auxin-degron cell lines) provided new reagents. A.P. and A.F.P.
provided reagents and experimental guidance. C.J.B., S.N., G.W.M.,
S.P., A.T.G., X.L., A.P., and A.H. integrated and conceptualized
the results. C.J.B., S.N., G.W.M., S.P., A.P., and A.H. wrote and
revised the manuscript, with contributions from all authors.
Competing interests:The authors declare no conflicts of interest.
Data and materials availability:Materials generated in this
study are available on request from the corresponding author. The
auxin-inducible AID::NUP358 HCT116, AID::NUP358 DLD1, and
NUP160::NG AID DLD1 degron cell lines are subject to a materials
transfer agreement, which is available upon request. The
coordinates and structure factors have been deposited in the
Protein Data Bank (PDB) with accession codes 7MNJ (NUP358145-673),
7MNK (NUP358OE), 7MNI (NUP88NTD•NUP98APD), 7MNL
(NUP358NTD•sAB-14), 7MNM (NUP358NTDT585M•sAB-14), 7MNN
(NUP358NTDT653I•sAB-14), 7MNO (NUP358NTDI656V•sAB-14),
7MNP (NUP358ZnF2•Ran(GDP)), 7MNQ (NUP358ZnF2•Ran(GDP)),
7MNR (NUP358ZnF3•Ran(GDP)), 7MNS (NUP358ZnF4•Ran(GDP)),
7MNT (NUP358ZnF5/6•Ran(GDP)), 7MNU (NUP358ZnF7•Ran(GDP)),
7MNV (NUP358ZnF8•Ran(GDP)), 7MNW (NUP358RanBD-I•Ran
(GMPPNP)), 7MNX (Nup358RanBD-II•Ran(GMPPNP)), 7MNY
(NUP358RanBD-III•Ran(GMPPNP)), 7MNZ (NUP358RanBD-IV•
Ran(GMPPNP)), 7MO0 (NUP50RanBD•Ran(GMPPNP)), 7MO1
(NUP153ZnF1•Ran(GDP)), 7MO2 (NUP153ZnF2•Ran(GDP)), 7MO3
(NUP153ZnF3•Ran(GDP), 2.05 Å), 7MO4 (NUP153ZnF3•Ran(GDP),
2.4 Å), and 7MO5 (NUP153ZnF4•Ran(GDP)). PyMol and Chimera
sessions containing the composite structures of the constricted
and dilated human NPCs can be obtained from our website (http://
ahweb.caltech.edu), and coordinates are deposited in the PDB
with accession numbers 7TBL and 7TBM, respectively.
Quantitative docking data, workflow code, and PyMol and
Chimera sessions have been deposited in the CaltechDATA
repository ( 101 ). License information:Copyright © 2022 the
authors, some rights reserved; exclusive licensee American
Association for the Advancement of Science. No claim to original
US government works.https://www.science.org/about/science-
licenses-journal-article-reuse

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abm9129
Materials and Methods
Supplementary Text
Figs. S1 to S89
Tables S1 to S18
References ( 102 – 153 )
MDAR Reproducibility Checklist

View/request a protocol for this paper fromBio-protocol.

Submitted 22 October 2021; accepted 15 April 2022
10.1126/science.abm9129

Bleyet al., Science 376 , eabm9129 (2022) 10 June 2022 18 of 18


RESEARCH | STRUCTURE OF THE NUCLEAR PORE
Free download pdf