92 Chapter 1 Fourier Series and Integrals
already have an expression for the middle integral. The last one can be found
by replacingfwithgin Eq. (1):
∫a
−a
g^2 (x)dx=a
[
2 A^20 +
∑N
1
A^2 n+B^2 n
]
. (4)
Now we have a formula forENin terms of the variablesA 0 ,An,Bn:
EN=
∫a
−a
f^2 (x)dx− 2 a
[
2 A 0 a 0 +
∑N
1
Anan+Bnbn
]
+a
[
2 A^20 +
∑N
1
A^2 n+B^2 n
]
. (5)
The errorENtakes its minimum value when all of the partial derivatives
with respect to the variables are zero. We must then solve the equations
∂EN
∂A 0
=− 4 aa 0 + 4 aA 0 = 0 ,
∂EN
∂An=−^2 aan+^2 aAn=^0 ,
∂EN
∂Bn=−^2 abn+^2 aBn=^0.
These equations require thatA 0 =a 0 ,An=an,Bn=bn.Thusgshould be
chosen to be thetruncatedFourier series off,
g(x)=a 0 +
∑N
n= 1
ancos
(nπx
a
)
+bnsin
(nπx
a
)
in order to minimizeEN.
Now that we know which choice ofA’s andB’s minimizesEN,wecancom-
pute that minimum value. After some algebra, we see that
min(EN)=
∫a
−a
f^2 (x)dx−a
[
2 a^20 +
∑N
1
a^2 n+b^2 n
]
. (6)
Eventhisminimumerrormustbegreaterthanorequaltozero,andthuswe
have theBessel inequality
1
a
∫a
−a
f^2 (x)dx≥ 2 a^20 +
∑N
1
a^2 n+b^2 n. (7)