92 Chapter 1 Fourier Series and Integrals
already have an expression for the middle integral. The last one can be found
by replacingfwithgin Eq. (1):
∫a−ag^2 (x)dx=a[
2 A^20 +
∑N
1A^2 n+B^2 n]
. (4)
Now we have a formula forENin terms of the variablesA 0 ,An,Bn:EN=
∫a−af^2 (x)dx− 2 a[
2 A 0 a 0 +∑N
1Anan+Bnbn]
+a[
2 A^20 +
∑N
1A^2 n+B^2 n]
. (5)
The errorENtakes its minimum value when all of the partial derivatives
with respect to the variables are zero. We must then solve the equations
∂EN
∂A 0=− 4 aa 0 + 4 aA 0 = 0 ,∂EN
∂An=−^2 aan+^2 aAn=^0 ,
∂EN
∂Bn=−^2 abn+^2 aBn=^0.
These equations require thatA 0 =a 0 ,An=an,Bn=bn.Thusgshould be
chosen to be thetruncatedFourier series off,
g(x)=a 0 +∑N
n= 1ancos(nπx
a)
+bnsin(nπx
a)
in order to minimizeEN.
Now that we know which choice ofA’s andB’s minimizesEN,wecancom-
pute that minimum value. After some algebra, we see that
min(EN)=∫a−af^2 (x)dx−a[
2 a^20 +∑N
1a^2 n+b^2 n]
. (6)
Eventhisminimumerrormustbegreaterthanorequaltozero,andthuswe
have theBessel inequality
1
a∫a−af^2 (x)dx≥ 2 a^20 +∑N
1a^2 n+b^2 n. (7)