1.10 Complex Methods 113
v=0? Sometimes notation is compressed and, instead of the last line, we
write
f(x)=
∫∞
−∞
f(t)δ(t−x)dt.
Althoughδis not, strictly speaking, a function, it is calledDirac’s delta func-
tion.
1.10 Complex Methods
Fourier series
Suppose that a functionf(x)equals its Fourier series
f(x)=a 0 +
∑∞
n= 1
ancos(nx)+bnsin(nx).
(We use period 2πfor simplicity only.) A famousformula of Euler states that
eiθ=cos(θ )+isin(θ ), wherei^2 =− 1.
Some simple algebra then gives the exponential definitions of the sine and
cosine:
cos(θ )=^1
2
(
eiθ+e−iθ
)
, sin(θ )=^1
2 i
(
eiθ−e−iθ
)
.
By substituting the exponential forms into the Fourier series offwe arrive at
the alternate form
f(x)=a 0 +^1
2
∑∞
n= 1
an
(
einx+e−inx
)
−ibn
(
einx−e−inx
)
=a 0 +^1
2
∑∞
n= 1
(an−ibn)einx+(an+ibn)e−inx.
We a r e n o w l e d t o d e fi n ecomplex Fourier coefficientsforf:
c 0 =a 0 , cn=^1
2
(an−ibn), c−n=^1
2
(an+ibn), n= 1 , 2 , 3 ,....
In terms of these two coefficients, we have
f(x)=c 0 +
∑∞
n= 1
(
cneinx+c−ne−inx
)
=
∑∞
−∞
cneinx. (1)