2.7 Sturm–Liouville Problems 179
this section. In particular, the problem
φ′′+λ^2 φ= 0 , 0 <x<a,
φ( 0 )= 0 , hφ(a)+κφ′(a)= 0
is a regular Sturm–Liouville problem, in which
s(x)=p(x)= 1 , q(x)= 0 ,α 1 = 1 ,α 2 = 0 ,
β 1 =h,β 2 =κ.
All conditions of the definition are met.- A less trivial example is
(xφ′)′+λ^2( 1
x)
φ= 0 , 1 <x< 2 ,φ( 1 )= 0 ,φ( 2 )= 0.We i d e n t i f ys(x)=x,p(x)= 1 /x,q(x)=0. This is a regular Sturm–
Liouville problem. The orthogonality relation is
∫ 21φn(x)φm(x)^1
xdx= 0 , n=m.The conclusions of Theorems 1 and 2 hold for both examples. EXERCISES
- The general solution of the differential equation in Example 2 is
φ(x)=c 1 cos(
λln(x))
+c 2 sin(
λln(x))
.
Find the eigenvalues and eigenfunctions, and verify the orthogonality rela-
tion directly by integration.- Check the results of Theorem 2 for the problem consisting of
φ′′+λ^2 φ= 0 , 0 <x<a,
with boundary conditions
a.φ( 0 )=0, φ(a)=0; b. φ′( 0 )=0, φ′(a)=0.
In caseb,λ^21 =0.- Find the eigenvalues and eigenfunctions, and sketch the first few eigenfunc-
tions of the problem
φ′′+λ^2 φ= 0 , 0 <x<a,