182 Chapter 2 The Heat Equation
mis a fixed integer) and integrating fromltoryields
∫r
l
f(x)φm(x)p(x)dx=
∑∞
n= 1
cn
∫r
l
φn(x)φm(x)p(x)dx.
The orthogonality relation says that all the terms in the series, except that one
in whichn=m, must disappear. Thus
∫r
l
f(x)φm(x)p(x)dx=cm
∫r
l
φm^2 (x)p(x)dx
gives a formula for choosingcm.
We can now cite a convergence theorem for expansion in terms of eigen-
functions. Notice the similarity to the Fourier series convergence theorem. Of
course, the Fourier sine or cosine series are series of eigenfunctions on a regu-
lar Sturm–Liouville problem in which the weight functionp(x)is 1.
Theorem. Letφ 1 ,φ 2 ,...be eigenfunctions of a regular Sturm–Liouville problem
Eqs.(1)–(3),inwhichtheα’s andβ’s are not negative.
If f(x)is sectionally smooth on the interval l<x<r, then
∑∞
n= 1
cnφn(x)=
f(x+)+f(x−)
2 , l<x<r, (6)
where
cn=
∫r
l∫fr(x)φn(x)p(x)dx
lφ^2 n(x)p(x)dx
.
Furthermore, if the series
∑∞
n= 1
|cn|
[∫r
l
φn^2 (x)p(x)dx
] 1 / 2
converges, then the series Eq.(6)converges uniformly, l≤x≤r.
EXERCISES
1.Ve r i f y t h a t
λ^2 n=
( nπ
ln(b)
) 2
,φn=sin
(
λnln(x)
)
are the eigenvalues and eigenfunctions of