2.12 The Error Function 203
EXERCISES
- Show that erf(−z)=−erf(z),thatis,thaterfisanoddfunction.
- Carry out the integration indicated in Eq. (8).
- Verify these properties of the complementary error function:
a.
d
dzerfc(z)=−e
−z^2 √^2
π;
b.erfc( 0 )=1;
c. zlim→∞erfc(z)=0;
d.z→−∞lim erfc(z)=2;
e.erfc(z)is neither even nor odd.
- Verify by differentiating thatu(x,t)=erf(x/
√
4 kt)satisfies the heat equa-
tion (1).
- Ve r i f y t h a tu(x,t)=erf(x/
√
4 kt)satisfies the initial condition
u(x,t)=
{ 1 , 0 <x,
− 1 , x<0.
- In probability and statistics, thenormal,orGaussian, probability density
function is defined as
f(z)=
1
√
2 π
e−z^2 /^2 , −∞<z<∞,
and the cumulative distribution function is
(x)=
∫x
−∞
f(z)dz.
Show that the cumulative distribution function and the error function are
related by(x)=[1+erf(x/
√
2 )]/2.
- Express this integral in terms of the error function:
I(x)=
∫ e−x
√xdx.
- Use error functions to solve the problem
∂^2 u
∂x^2 =
1
k
∂u
∂t,^0 <x,^0 <t,