210 Chapter 2 The Heat Equation
24.Solve the eigenvalue problem by settingφ(ρ)=ψ(ρ)/ρ:
1
ρ^2
(
ρ^2 φ′
)′
+λ^2 φ= 0 , 0 <ρ<a,
φ( 0 ) bounded,φ(a)= 0.
Is this a regular Sturm–Liouville problem? Are the eigenfunctions or-
thogonal?
25.Solve this problem for heat conduction in a sphere. (Hint: Letu(ρ,t)=
v(ρ,t)/ρ.)
1
ρ^2
∂
∂ρ
(
ρ^2 ∂∂ρu
)
=^1 k∂∂ut, 0 <ρ<a, 0 <t,
u( 0 ,t) bounded, u(a,t)= 0 , 0 <t,
u(ρ, 0 )=T 0 , 0 <ρ<a.
26.State and solve the eigenvalue problem associated with
e−x∂
∂x
(
ex∂u
∂x
)
=^1
k
∂u
∂t
, 0 <x<a, 0 <t,
u( 0 ,t)= 0 , ∂u
∂x
(a,t)= 0.
27.Find the steady-state solution of the problem
∂^2 u
∂x^2 +γ
2 (T(x)−u)=^1
k
∂u
∂t,^0 <x<a,^0 <t,
u( 0 ,t)=T 0 ,
∂u
∂x(a,t)=^0 ,^0 <t,
whereT(x)=T 0 +Sx.
28.Determine whether or notλ=0isaneigenvalueoftheproblem
φ′′+λ^2 xφ= 0 , 0 <x<a,
φ′( 0 )= 0 ,φ(a)= 0.
29.Same question as Exercise 28, but with boundary conditions
φ′( 0 )= 0 ,φ′(a)= 0.