4.3 Further Examples for a Rectangle 265
pected) that
X′′(x)
X(x)=−
Y′′(y)
Y(y)=constant.
The conditions atx=0andx=abecome
X′( 0 )= 0 , X′(a)= 0.If we make the separation constant−λ^2 , we find a familiar eigenvalue problem
forXwhose solution is
X 0 (x)= 1 ,λ 0 = 0 ,
Xn(x)=cos(λnx), λn=nπ/a, n= 1 , 2 ,....For the factorY(y), the differential equation is
Y 0 ′′= 0 , or Yn′′−λ^2 nYn= 0with solution
Y 0 (y)=a 0 +b 0 y or Yn(y)=ancosh(λny)+bnsinh(λny).Thus, the principle of superposition leads to the series solutionu(x,y)=a 0 +b 0 y+∑∞
n= 1(
ancosh(λny)+bnsinh(λny))
cos(λnx).The boundary condition aty=0becomes
a 0 +∑∞
1ancos(λnx)= 0 , 0 <x<a,from which we see that all thea’s are 0. Then aty=bwe have
b 0 b+∑∞
n= 1(
bnsinh(λnb))
cos(λnx)=V 0 x
a ,^0 <x<a.This is a slightly disguised cosine series. The coefficients are
b 0 b=^1
a∫a0V 0
(
x
a)
dx,bnsinh(λnb)=^2
a∫a0V 0
(
x
a)
cos(λnx)dx.See a color graphic of the solution on the CD.