1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

5.10 Some Applications of Legendre Polynomials 351



  1. Solve the potential equation in a hemisphere, 0<ρ<1, 0<φ<π/2,
    subject to boundedness conditions atρ=0andφ=0, and the boundary
    conditions
    u( 1 ,φ)= 1 , 0 <φ<π/ 2 ,
    u(ρ, π/ 2 )= 0 , 0 <ρ< 1.
    Hint: Use odd-order Legendre polynomials.

  2. Solve this heat problem with convection on a spherical shell of radiusR:


1
R^2 sin(φ)


∂φ

(

sin(φ)∂∂φu

)

−γ^2 (u−T)=^1 k∂∂ut,

0 <φ<π, 0 <t,
u(φ, 0 )= 0 , 0 <φ<π.

Think carefully about the physical situation before attempting a solution.


  1. Solve this heat problem on a hemispherical shell of radiusR:


1
R^2 sin(φ)


∂φ

(

sin(φ)∂u
∂φ

)

=^1

k

∂u
∂t

, 0 <φ<π/ 2 , 0 <t,

∂u
∂φ

(π/ 2 ,t)= 0 , 0 <t,

u(φ, 0 )=cos(φ), 0 <φ<π/ 2.


  1. Solve the eigenvalue problem


1
ρ^2

[


∂ρ

(

ρ^2 ∂u
∂ρ

)

+^1

sin(φ)


∂φ

(

sin(φ)∂u
∂φ

)]

=−λ^2 u,

0 <ρ<a, 0 <φ<π/ 2 ,
u(a,φ)= 0 , 0 <φ<π/ 2 ,
u(r,π/ 2 )= 0 , 0 <r<a,

subject to boundedness conditions atρ=0andatφ=0.


  1. In Part C of this section we mention nodal surfaces (i.e., surfaces where
    the function is 0). Find the nodal surfaces of the function
    ρ−^1 /^2 J 3 / 2 (λρ)P 1


(

cos(φ)

)

ifλis the second positive solution ofJ 3 / 2 (λ)=0.


  1. Describe in words the nodal surfaces for


ρ−^1 /^2 J 5 / 2 (λρ)P 2

(

cos(φ)

)
Free download pdf