1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1
Miscellaneous Exercises 355
both directly and by assuming that bothu(r)and the constant function 1
haveBesselseriesontheinterval0<r<a:

u(r)=

∑∞

n= 1

CnJ 0 (λnr), 0 <r<a,

1 =

∑∞

n= 1

cnJ 0 (λnr), 0 <r<a.
(
Hint:^1 rdrd

(

rdJ^0 dr(λr)

)

=−λ^2 J 0 (λr).

)

6.Suppose thatw(x,t)andv(y,t)are solutions of the partial differential
equations
∂^2 w
∂x^2

=^1

k

∂w
∂t

, ∂

(^2) v
∂y^2


=^1

k

∂v
∂t

.

Show thatu(x,y,t)=w(x,t)v(y,t)satisfies the two-dimensional heat
equation
∂^2 u
∂x^2 +

∂^2 u
∂y^2 =

1

k

∂u
∂t.

7.Use the idea of Exercise 6 to solve the problem stated in Exercise 1.
8.Letw(x,y)andv(z,t)satisfy the equations
∂^2 w
∂x^2

+∂

(^2) w
∂y^2


= 0 , ∂

(^2) v
∂z^2


=^1

c^2

∂^2 v
∂t^2

.

Show that the productu(x,y,z,t)=w(x,y)v(z,t)satisfies the three-
dimensional wave equation
∂^2 u
∂x^2 +

∂^2 u
∂y^2 +

∂^2 u
∂z^2 =

1

c^2

∂^2 u
∂t^2.

9.Find the product solutions of the equation
1
r


∂r

(

r∂u
∂r

)

=^1

k

∂u
∂t

, 0 <r, 0 <t,

that are bounded asr→ 0 +and asr→∞.

10.Show that the boundary value problem
(
( 1 −x^2 )φ′


)′

=−f(x), − 1 <x< 1 ,
φ(x)bounded atx=± 1 ,
Free download pdf