1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

24 Chapter 0 Ordinary Differential Equations


1.

du
dt+a(u−T)=0.


  1. dudt+au=e−at.

  2. d


(^2) u
dt^2
+u=cos(t).



  1. d


(^2) u
dt^2



  • 3 du
    dt

  • 2 u=cosh(t).


9.^1
ρ^2


d

(

ρ^2 du

)

=−1.

2.

du
dt+au=e

at.

4.

d^2 u
dt^2 +u=cos(ωt)(ω=^1 ).


  1. d


(^2) u
dx^2 −γ
(^2) (u−U)= 0
(U,γ^2 are constants).


8.^1
r


d
dr

(

rdu
dr

)

=−1.


  1. d


(^2) u
dt^2 =−1.
11.Leth(t)be the height of a parachutist above the surface of the earth. Con-
sideration of forces on his body leads to the initial value problem forh:
Md
(^2) h
dt^2
+Kdh
dt
=−Mg,
h( 0 )=h 0 , dhdt( 0 )= 0
(M=mass,g=acceleration of gravity,K=parachute constant). Solve
the problem, takingg=32 ft/s^2 andK/M= 0 .1/s.
12.Solve this initial value problem for forced vibrations,
d^2 u
dt^2 +ω
(^2) u=f 0 sin(μt),
u( 0 )= 0 , du
dt


( 0 )= 0 ,

in two cases: (a)μ=ω,(b)μ=ω.
In Exercises 13–19, use variation of parameters to find a particular solution of
the differential equation. Be sure that the differential equation is in the correct
form.



  1. dudt+au=e−at, uc(t)=e−at.


14.t

du
dt=−1, uc(t)=1.

15.

d^2 y
dx^2 +y=tan(x), y^1 (x)=cos(x), y^2 (x)=sin(x).


  1. d


(^2) y
dx^2 +y=sin(x), y^1 (x)=cos(x), y^2 (x)=sin(x).

Free download pdf