Miscellaneous Exercises 357
15.Solve the following potential problem in a cylinder:
1
r
∂
∂r
(
r
∂u
∂r
)
+
∂^2 u
∂z^2 =^0 ,^0 <r<a,^0 <z<b,
u(a,z)= 0 , 0 <z<b,
u(r, 0 )= 0 , u(r,b)=U 0 , 0 <r<a.
16.Find the solution of the heat conduction problem
1
r
∂
∂r
(
r∂u
∂r
)
=^1
k
∂u
∂t
, 0 <r<a, 0 <t,
u(a,z)=T 0 , 0 <t,
u(r, 0 )=T 1 , 0 <r<a.
17.Find some frequencies of vibration of a cylinder by finding product so-
lutions of the problem
1
r
∂
∂r
(
r∂∂ur
)
+∂
(^2) u
∂z^2 =
1
c^2
∂^2 u
∂t^2 ,^0 <r<a,^0 <z<b,^0 <t,
u(r, 0 ,t)= 0 , u(r,b,t)= 0 , 0 <r<a,α<t,
u(a,z,t)= 0 , 0 <z<b, 0 <t.
18.Derive the given formula for the solution of the following potential equa-
tion in a spherical shell:
∇^2 u= 0 , a<ρ<b, 0 <φ<π,
u(a,φ)=f
(
cos(φ)
)
, u(b,φ)= 0 , 0 <φ<π,
u(ρ, φ)=
∑∞
n= 0
An
b^2 n+^1 −ρ^2 n+^1
b^2 n+^1 −a^2 n+^1
(a
ρ
)n+ 1
Pn
(
cos(φ)
)
,
An=^2 n 2 +^1
∫ 1
− 1
f(x)Pn(x)dx.
19.Show that the functionφ(x,y)=sin(πx)sin( 2 πy)−sin( 2 πx)sin(πy)
is an eigenfunction for the triangleTbounded by the linesy=0,y=x,
x=1. That is,
∇^2 φ=−λ^2 φ inT,
φ= 0 on the boundary ofT.
What is the eigenvalueλ^2 associated withφ?