374 Chapter 6 Laplace Transform
The transformed equation is readily solved, yielding
U(s)=su^0 +u^1
s^2 −a
+^1
s^2 −a
F(s).
Because 1/(s^2 −a)is the transform of sinh(√at)/√a, we easily determine that
uis
u(t)=u 0 cosh
(√
at
)
+
u 1
√asinh
(√
at
)
+
∫t
0
sinh(√a(t−t′))
√a f
(
t′
)
dt′. (5)
A slightly different problem occurs if the mass in a spring–mass system is
struck while the system is in motion. The mathematical model of the system
might be
u′′+ω^2 u=f(t), u( 0 )=u 0 , u′( 0 )=u 1 ,
wheref(t)=F 0 fort 0 <t<t 1 andf(t)=0 for other values. The transform of
uis
U(s)=su^0 +u^1
s^2 +ω^2
+^1
s^2 +ω^2
F(s).
The inverse transform ofU(s)is then
u(t)=u 0 cos(ωt)+u 1 sin(ωt)
ω
+
∫t
0
sin(ω(t−t′))
ω
f
(
t′
)
dt′.
The convolution in this case is easy to calculate:
∫t
0
sin(ω(t−t′))
ω f
(
t′
)
dt′
=
0 , t<t 0 ,
F 01 −cos(ω(ω 2 t−t^0 )), t 0 <t<t 1 ,
F 0 cos(ω(t−t^1 ))ω− 2 cos(ω(t−t^0 )), t 1 <t.
EXERCISES
1.Solve these initial value problems.
a. u′− 2 u=0, u( 0 )=1;
b. u′+ 2 u=0, u( 0 )=1;
c. u′′+ 4 u′+ 3 u=0, u( 0 )=1, u′( 0 )=0;
d. u′′+ 9 u=0, u( 0 )=0, u′( 0 )=1.