1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

6.3 Partial Differential Equations 377


Example 1.


∂^2 u
∂x^2

=∂u
∂t

, 0 <x< 1 , 0 <t,
u( 0 ,t)= 1 , u( 1 ,t)= 1 , 0 <t,
u(x, 0 )= 1 +sin(πx), 0 <x< 1.

The partial differential equationand the boundary conditions(that is, every-
thing that is valid fort>0) are transformed, while the initial condition is
incorporated by the transform


d^2 U
dx^2 =sU−

(

1 +sin(πx)

)

, 0 <x< 1 ,

U( 0 ,s)=^1
s

, U( 1 ,s)=^1
s

.

This boundary value problem is solved to obtain


U(x,s)=^1 s+sins+(ππx 2 ).

We d i r e c t o u r a t t e n t i o n n o w t oUas a function ofs. Because sin(πx)is a con-
stant with respect tos,tablesmaybeusedtofind


u(x,t)= 1 +sin(πx)exp

(

−π^2 t

)

. 

Example 2.


∂^2 u
∂x^2 =

∂^2 u
∂t^2 ,^0 <x<^1 ,^0 <t,
u( 0 ,t)= 0 , u( 1 ,t)= 0 , 0 <t,
u(x, 0 )=sin(πx), 0 <x< 1 ,
∂u
∂t

(x, 0 )=−sin(πx), 0 <x< 1.

Under transformation the problem becomes


d^2 U
dx^2

=s^2 U−ssin(πx)+sin(πx), 0 <x< 1 ,
U( 0 ,s)= 0 , U( 1 ,s)= 0.

The functionUis found to be


U(x,s)= s−^1
s^2 +π^2

sin(πx),
Free download pdf