Miscellaneous Exercises 431
14.The analytical solution of the problem in Exercise 13 is u(x,y)=
( 2 /π )tan−^1 (y/x). Compare your numerical results with the exact so-
lution.
15.Using x= y= 1 /4andr= 1 /4, find a numerical solution for this
problem:
∇^2 u=∂∂ut, 0 <x< 1 , 0 <y< 1 , 0 <t,
u(x, 0 ,t)=u(x, 1 ,t)= 0 , 0 <x< 1 , 0 <t,
u( 0 ,y,t)=u( 1 ,y,t)= 0 , 0 <y< 1 , 0 <t,
u(x,y, 0 )= 1 , 0 <x< 1 , 0 <y< 1.16.TheanalyticalsolutionoftheprobleminExercise15is
u(x,y,t)=∑∞
n= 1∑∞
n= 14 ( 1 −cos(nπ ))( 1 −cos(mπ))
π^2 mn×sin(nπx)sin(nπy)e−(m^2 +n^2 )π^2 t.
Using just the termm=n=1 of this solution, compare the ratioR=
u( 1
2 ,
1
2 ,tm+^1)
u( 1
2 ,
1
2 ,tm)
and the ratio of the correspondingu’s computed in Exercise 15.