436 Appendix: Mathematical References
Hyperbolic Functions
cosh(A)=1
2
(
eA+e−A)
, sinh(A)=1
2
(
eA−e−A)
dcosh(u)=sinh(u)du, dsinh(u)=cosh(u)du
sinh(A±B)=sinh(A)cosh(B)±cosh(A)sinh(B)
cosh(A±B)=cosh(A)cosh(B)±sinh(A)sinh(B)sinh(A)+sinh(B)=2sinh(A+B
2
)
cosh(A−B
2
)
sinh(A)−sinh(B)=2cosh(A+B
2
)
sinh(A−B
2
)
cosh(A)+cosh(B)=2cosh(
A+B
2
)
cosh(
A−B
2
)
cosh(A)−cosh(B)=2sinh(
A+B
2
)
sinh(
A−B
2
)
sinh(A)sinh(B)=1
2
(
cosh(A+B)−cosh(A−B))
sinh(A)cosh(B)=^12(
sinh(A+B)+sinh(A−B))
cosh(A)cosh(B)=^1
2(
sinh(A+B)+cosh(A−B))
cosh^2 (A)−sinh^2 (A)= 1 , 1 −tanh^2 (A)=sech^2 (A)Calculus
1.Derivative of a product(uv)′=u′v+uv′
(uv)′′=u′′v+ 2 u′v′+uv′′(uv)(n)=u(n)v+(n
1)
u(n−^1 )v′+···+( n
n− 1)
uv(n−^1 )+uv(n)In this formula,(n
k)
=(n−nk!)!k!is a binomial coefficient.
2.Rules of integrationa.∫ba(
c 1 f 1 (x)+c 2 f 2 (x))
dx=c 1∫baf 1 (x)dx+c 2∫baf 2 (x)dx