436 Appendix: Mathematical References
Hyperbolic Functions
cosh(A)=
1
2
(
eA+e−A
)
, sinh(A)=
1
2
(
eA−e−A
)
dcosh(u)=sinh(u)du, dsinh(u)=cosh(u)du
sinh(A±B)=sinh(A)cosh(B)±cosh(A)sinh(B)
cosh(A±B)=cosh(A)cosh(B)±sinh(A)sinh(B)
sinh(A)+sinh(B)=2sinh
(A+B
2
)
cosh
(A−B
2
)
sinh(A)−sinh(B)=2cosh
(A+B
2
)
sinh
(A−B
2
)
cosh(A)+cosh(B)=2cosh
(
A+B
2
)
cosh
(
A−B
2
)
cosh(A)−cosh(B)=2sinh
(
A+B
2
)
sinh
(
A−B
2
)
sinh(A)sinh(B)=
1
2
(
cosh(A+B)−cosh(A−B)
)
sinh(A)cosh(B)=^12
(
sinh(A+B)+sinh(A−B)
)
cosh(A)cosh(B)=^1
2
(
sinh(A+B)+cosh(A−B)
)
cosh^2 (A)−sinh^2 (A)= 1 , 1 −tanh^2 (A)=sech^2 (A)
Calculus
1.Derivative of a product
(uv)′=u′v+uv′
(uv)′′=u′′v+ 2 u′v′+uv′′
(uv)(n)=u(n)v+
(n
1
)
u(n−^1 )v′+···+
( n
n− 1
)
uv(n−^1 )+uv(n)
In this formula,
(n
k
)
=(n−nk!)!k!is a binomial coefficient.
2.Rules of integration
a.
∫b
a
(
c 1 f 1 (x)+c 2 f 2 (x)
)
dx=c 1
∫b
a
f 1 (x)dx+c 2
∫b
a
f 2 (x)dx