Answers to Odd-Numbered Exercises 443
c.λ=±nπ
a,n=^0 ,^1 ,^2 ,....
5.c=−a/2,c′=h−^1
μcosh(μa
2)
.
7.u(x)=T+c 1 cosh(γx)+c 2 sinh(γx),whereγ=√
hC
κAandc 1 =T 0 −T,c 2 =−κγsinh(γa)+hcosh(γa)
κγcosh(γa)+hsinh(γa)c 1.9.u(x)=T+H(
1 −cosh(γx)−^1 −sinhcosh(γ(γa)a)sinh(γx))
,
whereH=I(^2) R
hCandγ=
√
hC
κA.
11.u(y)=y(L−y)g/ 2 μ.
13.P=EI(nπ/L)^2 ,n= 1 , 2 ,....15.u(x)=T+A(
1 −cosh(γx)−^1 −cosh(γa)
sinh(γa)sinh(γx))
,
A=g/κγ^2 ,andγ=√
hC
κA.
17.u(r)=c 1 ln(r/a)+c 2 , c 1 = h 0 h 1 (Ta −TW)/D, c 2 =[h 0 (κ/b+
h 1 ln(b/a))TW+(κ/a)h 1 Ta]/D,D=h 1 κ/a+h 0 κ/b+h 0 h 1 ln(b/a).19.u(x)=w 0
EI(x 4
24 −ax^3
6 +a^2 x^2
2)
.
Section 0.4
- a.u′′+^1 ru′−u=0,r=0;
b.u′′−^2 x
1 −x^2u′=0,x=±1;c.u′′+cot(φ)u′−u=0,φ=0,±π,± 2 π,...;d.u′′+^2
ρu′+λ^2 u=0,ρ=0.3.u( 0 )bounded;u(ρ)=H
6 κ(
c^2 −ρ^2)
+Hc
3 h+T.
5.u(ρ)=1
ρ(
c 1 cos(μρ)+c 2 sin(μρ))
,
u(ρ)≡0unlessμa=π, 2 π,.... The critical radius isa=π
μ