Chapter 1 447
b.4
π[
sin(πx
2)
+
1
3 sin( 3 πx
2)
+
1
5 sin( 5 πx
2)
+···
]
;
c. 121 −π^12[
cos( 2 πx)−^14 cos( 4 πx)+^19 cos( 6 πx)−···]
.
- ̄f(x)=f(x− 2 na),2na<x< 2 (n+ 1 )a,
f(x)∼a 0 +∑∞
1ancos(nπx/a)+bnsin(nπx/a),a 0 =^1
2 a∫ 2 a0f(x)dx,an=^1
a∫ 2 a0f(x)cos(nπx/a)dx,bn=1
a∫ 2 a0f(x)sin(nπx/a)dx.- Odd: (a), (d), (e); even: (b), (c); neither: (f ).
- a.
2
π(
sin(πx)−1
2 sin(^2 πx)+···)
;
b. This function is its own Fourier series;c.4
π^2(
sin(πx)−1
9 sin(^3 πx)+1
25 sin(^5 πx)−···)
.
- Iff(−x)=−f(x)andf(x)=f(a−x)for 0<x<a, sine coefficients
with even indices are zero. Example: square wave. - a.f(x)= 1 =
2
π∑∞
11 −cos(nπ)
n sin(nπx
a)
;
b.f(x)=a
2 −2 a
π^2∑∞
11 −cos(nπ)
n^2 cos(nπx
a)
=^2 πa∑∞
1−cos(nπ)
n sin(
nπx
a)
;
c.f(x)=∑∞
1(− 1 )n+^1 sin( 1 )^2 nπ
(nπ)^2 − 1sin(nπx), 0 <x< 1=
∑∞
1(
(− 1 )ncos( 1 )− 1) 2
(nπ)^2 − 1 cos(nπx),^0 <x<^1 ;d.f(x)=^2
π[
1 −
∑∞
11 +cos(nπ)
n^2 − 1cos(nx)]
=sin(x).- Even, yes. Odd, yes only iff( 0 )=f(a)=0.