Chapter 1 447
b.
4
π
[
sin
(πx
2
)
+
1
3 sin
( 3 πx
2
)
+
1
5 sin
( 5 πx
2
)
+···
]
;
c. 121 −π^12
[
cos( 2 πx)−^14 cos( 4 πx)+^19 cos( 6 πx)−···
]
.
- ̄f(x)=f(x− 2 na),2na<x< 2 (n+ 1 )a,
f(x)∼a 0 +
∑∞
1
ancos(nπx/a)+bnsin(nπx/a),
a 0 =^1
2 a
∫ 2 a
0
f(x)dx,an=^1
a
∫ 2 a
0
f(x)cos(nπx/a)dx,
bn=
1
a
∫ 2 a
0
f(x)sin(nπx/a)dx.
- Odd: (a), (d), (e); even: (b), (c); neither: (f ).
- a.
2
π
(
sin(πx)−
1
2 sin(^2 πx)+···
)
;
b. This function is its own Fourier series;
c.
4
π^2
(
sin(πx)−
1
9 sin(^3 πx)+
1
25 sin(^5 πx)−···
)
.
- Iff(−x)=−f(x)andf(x)=f(a−x)for 0<x<a, sine coefficients
with even indices are zero. Example: square wave. - a.f(x)= 1 =
2
π
∑∞
1
1 −cos(nπ)
n sin
(nπx
a
)
;
b.f(x)=
a
2 −
2 a
π^2
∑∞
1
1 −cos(nπ)
n^2 cos
(nπx
a
)
=^2 πa
∑∞
1
−cos(nπ)
n sin
(
nπx
a
)
;
c.f(x)=
∑∞
1
(− 1 )n+^1 sin( 1 )^2 nπ
(nπ)^2 − 1
sin(nπx), 0 <x< 1
=
∑∞
1
(
(− 1 )ncos( 1 )− 1
) 2
(nπ)^2 − 1 cos(nπx),^0 <x<^1 ;
d.f(x)=^2
π
[
1 −
∑∞
1
1 +cos(nπ)
n^2 − 1
cos(nx)
]
=sin(x).
- Even, yes. Odd, yes only iff( 0 )=f(a)=0.