454 Answers to Odd-Numbered Exercises
35.a 0 =
a
6 ,an=
2 a
n^2 π^2
(
cos
( 2 nπ
3
)
−cos
(nπ
3
))
.
37.a 0 =^58 ,an=n (^22) π 2
(
3cos
(
nπ
2
)
− 2 −cos(nπ)
)
.
39.a 0 =
1
2 ,an=
2
n^2 π^2
(
1 −cos(nπ)
)
.
41.a 0 =a
2
6 ,an=
− 2 a^2
n^2 π^2
(
1 +cos(nπ)
)
.
43.a 0 =
1
2 ,an=
− 1
nπ2sin
(nπ
2
)
.
45.bn=^1 +cos(nπ/^2 )−2cos(nπ)
nπ
.
47.bn=a
(2sin(nπ/ 2 )
n^2 π^2 −
cos(nπ)
nπ
)
.
49.bn=n^2 π
(
cos
(
nπ
4
)
−cos
(
3 nπ
4
))
.
51.bn= 2 nπ(^1 −e
kacos(nπ))
(a^2 k^2 +n^2 π^2 )
.
53.A(λ)=^2
π( 1 +λ^2 )
.
55.A(λ)=
2sin(λb)
πλ.
57.A(λ)=
2 ( 1 −cos(λ))
πλ^2.
59.B(λ)=^2 λ
π( 1 +λ^2 )
.
61.B(λ)=
2 ( 1 −cos(λb))
λπ.
63.B(λ)=
2 (λ−sin(λ))
λ^2 π.
- The termancos(nx)+bnsin(nx)appears inSn,Sn+ 1 ,...,SN,andthus
N+ 1 −ntimes inσN. - Use Eq. (13) of Section 7 and the identity in Exercise 66.
- a. Usex=0; b.x= 1 /2; c.x=0.