476 Answers to Odd-Numbered Exercises
c.u(x,y)=∑∞
1ansin(nπx)exp(−n^2 π^2 y),an= 2∫ 1
0f(x)sin(nπx)dx.7.X′′/X=−λ^2 ,T′′/T=−λ^2 /( 1 +λ^2 ).Chapter 4 Miscellaneous Exercises
1.u(x,y)=∑∞
1bnsinh(λn(a−x))
sinh(λna) sin(λny),
λn=nπ/b,bn= 2 ( 1 −cos(nπ ))/nπ.
3.u(x,y)=1.Notethat0isaneigenvalue.5.u(x,y)=∑∞
n= 1ansinh(λnx)+bnsinh(λn(a−x))
sinh(λna) cos(λny),
λn=( 2 n− 1 )π/ 2 b,an=bn= 4 (− 1 )n+^1 /π( 2 n− 1 ).
7.u(x,y)=w(x,y)+w(y,x),wherew(x,y)=∑∞
n= 1bnsinhsinh(λn(λ(a−y))
na)sin(λnx),λn=nπ/a,bn=8 h
n^2 π^2 sin(nπ
2)
.
9.u(x,y)=∫∞
0A(λ)sinh(λ(b−y))
sinh(λb)cos(λx)dλ,A(λ)=2sin(λa)/λπ.11.u(x,y)=∫∞
0A(λ)cos(λx)e−λydλ,A(λ)= 2 α/π(
α^2 +λ^2)
.
13.u(x,y)=−π^1 tan−^1(
x−x′
y)∣∣
∣∣
∞
−∞=π^1[
π
2 −(
−π 2)]
.
15.u(r,θ)=a 0 +∑∞
n= 1(r
c)n(
ancos(nθ)+bnsin(nθ))
,
a 0 =1
2 ,an=0,bn=1 −cos(nπ)
nπ.- Same form as Exercise 15, buta 0 = 2 /π,
an= 2 ( 1 +cos(nπ ))/( 1 −n^2 ),bn=0(anda 1 =0).
19.u(r,θ)=(ln(r)−ln(b))/(ln(a)−ln(b)).