476 Answers to Odd-Numbered Exercises
c.u(x,y)=
∑∞
1
ansin(nπx)exp(−n^2 π^2 y),
an= 2
∫ 1
0
f(x)sin(nπx)dx.
7.X′′/X=−λ^2 ,T′′/T=−λ^2 /( 1 +λ^2 ).
Chapter 4 Miscellaneous Exercises
1.u(x,y)=
∑∞
1
bn
sinh(λn(a−x))
sinh(λna) sin(λny),
λn=nπ/b,bn= 2 ( 1 −cos(nπ ))/nπ.
3.u(x,y)=1.Notethat0isaneigenvalue.
5.u(x,y)=
∑∞
n= 1
ansinh(λnx)+bnsinh(λn(a−x))
sinh(λna) cos(λny),
λn=( 2 n− 1 )π/ 2 b,an=bn= 4 (− 1 )n+^1 /π( 2 n− 1 ).
7.u(x,y)=w(x,y)+w(y,x),where
w(x,y)=
∑∞
n= 1
bnsinhsinh(λn(λ(a−y))
na)
sin(λnx),
λn=nπ/a,bn=
8 h
n^2 π^2 sin
(nπ
2
)
.
9.u(x,y)=
∫∞
0
A(λ)sinh(λ(b−y))
sinh(λb)
cos(λx)dλ,A(λ)=2sin(λa)/λπ.
11.u(x,y)=
∫∞
0
A(λ)cos(λx)e−λydλ,A(λ)= 2 α/π
(
α^2 +λ^2
)
.
13.u(x,y)=−π^1 tan−^1
(
x−x′
y
)∣∣
∣∣
∞
−∞
=π^1
[
π
2 −
(
−π 2
)]
.
15.u(r,θ)=a 0 +
∑∞
n= 1
(r
c
)n(
ancos(nθ)+bnsin(nθ)
)
,
a 0 =
1
2 ,an=0,bn=
1 −cos(nπ)
nπ.
- Same form as Exercise 15, buta 0 = 2 /π,
an= 2 ( 1 +cos(nπ ))/( 1 −n^2 ),bn=0(anda 1 =0).
19.u(r,θ)=(ln(r)−ln(b))/(ln(a)−ln(b)).