1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

Chapter 7 491



  1. Coordinates and values of the correspondingui are:( 1 / 7 , 1 / 7 ),5α;
    ( 2 / 7 , 1 / 7 ),10α;( 3 / 7 , 1 / 7 ),14α;( 1 / 7 , 2 / 7 ),21α;( 2 / 7 , 2 / 7 ),32α.Here
    α= 19 /1159.
    7.u 1 = 0 .670,u 2 = 0 .721,u 3 = 0 .961,u 4 = 1 .212,u 5 = 0 .954,u 6 = 0 .651.
    The remaining values are found by symmetry.
    9.u 1 = 0 .386,u 2 = 0 .542,u 3 = 0 .784,u 4 = 0 .595. The remaining values are
    found by symmetry.


Section 7.5



  1. Use Eq. (8) withr= 1 /4.


i
m 1234 5 6
0 0000 0 0
10 0 0 1 / 41 / 41 / 4
21 / 16 1 / 16 1 / 16 5 / 16 3 / 85 / 16
33 / 32 1 / 83 / 32 23 / 64 27 / 64 23 / 64


  1. Note thatu 1 =u 2 =u 4 =u 5 ; replacement equations become
    u 1 (m+ 1 )=u 3 (m)/4,u 3 (m+ 1 )=u 1 (m).


i
m 13
0 11
11 / 41
21 / 41 / 4
31 / 16 1 / 4
41 / 16 1 / 16


  1. Use Eq. (8) withr= 1 /4. Note thatu 4 =u 2 ,u 7 =u 3 ,u 8 =u 6.


i
m 12356 9
0 00000 0
10 0 1 /40 1/ 41 / 2
20 1 / 16 5 / 16 1 / 87 / 16 5 / 8
31 / 32 7 / 64 3 / 81 / 417 / 64 23 / 32


  1. Use the same numbering as for Exercise 5. Note thatu 1 =u 3 =u 7 =u 9
    andu 2 =u 4 =u 6 =u 8. The running equations become


u 1 (m+ 1 )=^1
2

u 2 (m)−u 1 (m− 1 ),
Free download pdf