0.5 Green’s Functions 49
The general solution of the corresponding homogeneous equation isu(x)=
c 1 +c 2 ln(x).Thus,wewouldchoose
u 1 (x)= 1 , u 2 (x)=ln(x)
so thatu 1 (x)is bounded atx=0andu 2 (x)is 0 atx=1. The Green’s function
is thus
G(x,z)=
{zln(x), 0 <z≤x,
zln(z), x≤z<1.
A similar procedure is followed if the intervall<x<ris infinite in length.
EXERCISES
In Exercises 1–8, find the Green’s function for the problem stated.
- d
(^2) u
dx^2 =f(x),0<x<a,
u( 0 )=0, u(a)=0.
- d
(^2) u
dx^2
=f(x),0<x<a,
u( 0 )=0,
du
dx(a)=0.
- d
(^2) u
dx^2 −γ
(^2) u=f(x),0<x<a,
du
dx
( 0 )=0, u(a)=0.
4.^1
r
d
dr
(
rdu
dr
)
=f(r),0≤r<c,
u(c)=0, u(r)bounded atr=0.
5.
1
ρ^2
d
dρ
(
ρ^2
du
dρ
)
=f(ρ),0≤ρ<c,
u(c)=0, u(ρ)bounded atρ=0.
6.
d^2 u
dx^2 +
1
x
du
dx−
1
4 x^2 u=f(x),0≤x<a,
u(a)=0, u(x)bounded atx=0.
- d
(^2) u
dx^2
−γ^2 u=f(x),0<x,
u( 0 )=0, u(x)bounded asx→∞.