1.2 Arbitrary Period and Half-Range Expansions 65
case, the coefficients are
a 0 =^1
2 a
∫a
−a
f(x)dx, an=^1
a
∫a
−a
f(x)cos
(nπx
a
)
dx,
bn=^1
a
∫a
−a
f(x)sin
(nπx
a
)
dx.
(1)
Example.
Find the Fourier series off(x)=|sin(πx)|.
Solution:This function is periodic with period 1, soa=p/ 2 = 1 /2. To do the
integrals for the Fourier coefficients, we need to get rid of the absolute value
signs:
f(x)=
{sin(πx), 0 <x<1,
−sin(πx), − 1 <x<0.
Then, it is easy to calculate
a 0 =^11
∫ 1 / 2
− 1 / 2
∣∣
sin(πx)
∣∣
dx=
∫ 0
− 1 / 2
−sin(πx)dx+
∫ 1 / 2
0
sin(πx)dx
=cos(ππx)
∣∣
∣∣
0
− 1 / 2
−cos(ππx)
∣∣
∣∣
1 / 2
0
=π^1 −−π^1 =π^2.
(Recall that cos(±π/ 2 )=0.) The other coefficients are found similarly:
an=^21
∫ 1 / 2
− 1 / 2
∣∣
sin(πx)
∣∣
cos( 2 nπx)dx
= 2
[∫ 0
− 1 / 2
−sin(πx)cos( 2 nπx)dx+
∫ 1 / 2
0
sin(πx)cos( 2 nπx)dx
]
=−π^4 · 4 n (^21) − 1.
Andbnis found to be 0 for alln. Consequently, the Fourier series of the function
is
∣∣
sin(πx)
∣∣
∼π^2 −π^4
∑∞
n= 1
1
4 n^2 − 1 cos(^2 nπx).
We will see later that|sin(πx)|is equal to its series.
It is often necessary to use a Fourier series to represent a function that has
been defined only in a finite interval. We can justify such a representation by
making the given function part of a periodic function. If the given functionfis
defined on the interval−a<x<a, we may construct ̄f,theperiodic extension