1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

1.2 Arbitrary Period and Half-Range Expansions 71


Figure 5 Odd periodic extension (period 2) off(x)=x,0<x<1.

Figure 6 Even periodic extension (period 2) off(x)=x,0<x<1.

The following six correspondences (we will later show them to be equalities)
follow from the ideas of this section. Note that the inequalities showing the
applicable range ofxare crucial.


∑∞
n= 1

−2cos(nπ)

sin(nπx)∼




f(x)=x, 0 <x<1,
fo(x)=x, − 1 <x<1,
f ̄o(x), −∞<x<∞,

1

2


∑∞

n= 1

2 ( 1 −cos(nπ))
n^2 π^2

cos(nπx)∼




f(x)=x, 0 <x<1,
fe(x)=|x|, − 1 <x<1,
f ̄e(x), −∞<x<∞.

EXERCISES


1.Find the Fourier series of each of the following functions. Sketch the graph
of the periodic extension offfor at least two periods.
a. f(x)=|x|, − 1 <x<1;
b. f(x)=

{− 1 , − 2 <x<0,
1 , 0 <x<2;
c. f(x)=x^2 , −^12 <x<^12.
Free download pdf