178 6. THREE-MANIFOLDS OF POSITIVE RICCI C URVATURE
PROOF. By applying the second Bianchi identity and commuting covari-
ant derivatives, we compute
and then apply the second Bianchi identity again to obtain
9 pq...., v p Re jqk -- 9 pq 9 em(-......, v k R· Jqmp - ......, v m R· Jqpk ) -- ......, v k j Re - ....,eR· Y 3k·
This lets us rewrite the formula for 6.Rfjk given above as
6.Rfjk = -\7i\7kR] + \7i\7eRjk + 'V/'hRf-\7/veRik
- gpq { R;ijR;qk + R;iqR]rk + R;ikR]qr - R~irRJqk }.
-R;jiR;qk - R;jqRfrk - R;jkRfqr + R~jrRiqk
Now the first Bianchi identity shows that
which implies that 6.Rfjk may be written as
(6.12a)
(6.12b)
(6.12c)
6.Rfjk = - \7i\7kR] + \7i\7eRjk + 'Vj'VkRf
- 'Vj'Ve~k - RiR]rk + RjRfrk
- gpq { -RijpR;qk + R;ikR]qr + R~jrRiqk }.
- R~irRJqk - R;jkRiqr
On the other hand, rewriting the commutator term gf-P (\7 j \7 i - \7 i \7 j) Rkp
in formula (6.2) yields
(6.13a) :tRijk = - \7i\7kR] + \7i\7eRjk + 'Vj'VkRf-'Vj'Ve~k
(6.13b)
The reaction-diffusion equation for the Riemann curvature tensor now fol-
lows from comparing terms in formulas (6.12) and (6.13). D
We define the (4, 0)-Riemann curvature tensor by Rijke ~ 9emR'':Jk, so
that R1221 > 0 on the round sphere. The following observation then follows
immediately from the lemma above.