BIBLIOGRAPHY 321
[91] Li, Peter; Yau, Shing Tung. Estimates of eigenvalues of a compact Riemann-
ian manifold. Geometry of the Laplace operator (Proc. Sympos. Pure Math.,
Univ. Hawaii, Honolulu, Hawaii, 1979), 205-239, Proc. Sympos. Pure Math.,
XXXVI, Amer. Math. Soc., Providence, R.I., 1980.
[92] Li, Peter; Yau, Shing-Tung. On the parabolic kernel of the Schrodinger operator.
Acta Math. 156 (1986), no. 3-4, 153 - 201.
[93] Lichnerowicz, Andre. Propagateurs et commutateurs en relativite generale. (French)
Inst. Hautes Etudes Sci. Pub!. Math. No. 10 , 1961.
[94] Lieberman, Gary M. Second order parabolic differential equations. World Scientifici
Publishing Co., River Edge, NJ, 1996.
[95] Margerin, Christophe. Un theoreme optimal pour le pincement faible en dimension 4.
(French) [An optimal t heorem for a weakly pinched 4-manifold] C.R. Acad. Sci. Paris
Ser. I Math. 303 (1986), no. 17 , 877- 880.
[96] Margerin, Christophe. Pointwise pinched manifolds are space forms. Geometric mea-
sure theory and the calculus of variations (Arcata, Calif., 1984), 307 - 328, Proc. Sym-
pos. Pure Math., 44, Amer. Math. Soc., Providence, RI, 1986.
[97] Milnor, John. A unique factorization theorem for 3-manifolds, Amer. J. Math. 84
(1962) 1-7.
[98] Milnor, John. Curvatures of left invariant metrics on Lie groups. Advances in
Math. 21 (1976), no. 3, 293- 329.
[99] Morgan, Frank. Geometric measure theory. A beginner's guide. Third edition. Aca-
demic Press, Inc., San Diego, CA, 2000.
[100] Myers, Sumner; Steenrod, Norman. The group of isometries of a Riemannian man-
ifold. Annals Math. 40 (1939) 400 - 416.
[101] Ni, Lei. Ricci flow and nonnegativity of curvature. arXiv:math.DG/0305246.
[102] Nishikawa, Seiki. Deformation of Riemannian metrics and manifolds with bounded
curvature ratios. Geometric measure theory and the calculus of variations (Arcata,
Calif., 1984), 343- 352, Proc. Sympos. Pure Math., 44, Amer. Math. Soc., Provi-
dence, RI, 1986.
[103] Nishikawa, Seiki. On deformation of Riemannian metrics and manifolds with posi-
tive curvature operator. Curvature and topology of Riemannian manifolds (Katata,
1985), 202- 211, Lecture Notes in Math., 1201 , Springer, Berlin, 1986.
[104] Palais, Richard S. Foundations of global non-linear analysis. W. A. Benjamin, Inc.,
New York-Amsterdam 1968.
[105] Perelman, Grisha. The entropy formula for the Ricci flow and its geometric appli-
cations. arXiv:math. DG/0211159.
[106] Perelman, Grisha. Ricci flow with surgery on three-manifolds.
arXiv:math.DG/0303109.
[107] Perelman, Grisha. Finite extinction time for the solutions to the Ricci flow on certain
three-manifolds. arXi v: math. DG/0307245.
[108] Peters, Stefan. Convergence of Riemannian manifolds. Compositio Math. 62 (1987),
no. 1, 3- 16.
[109] Petersen, Peter. Convergence theorems in Riemannian geometry. Comparison geom-
etry (Berkeley, CA, 1993 - 94), 167- 202, Math. Sci. Res. Inst. Pub!., 30, Cambridge
Univ. Press, Cambridge, 1997.
[110] Protter, Murray H.; Weinberger, Hans F. Maximum principles in differential equa-
tions. Corrected reprint of the 1967 original. Springer-Verlag, New York, 1984.
[111] Rosenau, Philip. On fast and super-fast diffusion. Phys. Rev. Lett. 74 (1995) 1056 -
1059.
[112] Schoen, Richard M. A report on some recent progress on nonlinear problems in
geometry, Surveys in differential geometry, Vol. I (Cambridge, MA, 1990), 201 - 241,
Lehigh Univ., Bethlehem, PA, 1991.