5. THE NECKPINCH 43
PROOF. Applying the maximum principle to (2.54), one concludes that
at any maximum of v which exceeds 1, one has
Vt :S ~ n -^1 ( 1 - V V 2 ) < 0.
Similarly, at any minimum of v with v < -1, one has Vt > 0. The result
follows once we observe that (2.48) implies sup Iv(·, O)I ~ 1. 0
Denoting the second derivative of 'ljJ by w ~ 'l/Jm one calculates that
v w^2 v^2 n - 1
(2.55a) Wt= Wss + (n - 2) -;j;Ws - 2--:;;; - (4n - 5) 'l/J 2 w + ~w
v^2 (l- v^2 )
(2.55b) - 2(n-1) 'ljJ 3
Together, the evolution equations for v and w help us obtain a good
estimate for a.
LEMMA 2.22. Under the Ricci flow, the quantity a evolves by
at= ass+ (n - 4) ~as - 4 (n - 1) ~~a.
PROOF. Noting that
a = 'ljJw - v^2 +1,
one computes that
and
ass= 'l/JsWs + 'l/JWss - VsW - VWs = 'l/JWss - W^2.
Then recalling equations (2.47), (2.54), and (2.55), one derives the equation
at = W'l/Jt + 'l/JWt - 2VVt
= w { w - (n - 1)
1
~ v
2
}
- 'ljJ { Wss + (n - 2)7 - 2~
2
- (4n - 5)~ }
+(n - 1)¥ - 2(n - l)v
2
(~3v
2
)
-2v{ws+(n- 2) v; + (n-l)v(l; 2 v
2
)}
v^2 w v^2 (1 -v^2 )
= 'l/Jwss - w^2 + (n - 4) VWs - (5n - 8) T -4(n - 1) 'l/J 2
v v^2
=ass+ (n- 4)-;j;as - 4(n - 1) 'ljJ 2 a.
Applying the maximum principle proves that a is uniformly bounded.