68 3. SHORT TIME EXISTENCE
Hence
D
LEMMA 3.2. The variation of the Levi-Civita connection r is given by
(3.3) atrij a k = Ike )
2 g Cvihje + vjhie - Vehij.
PROOF. Recall thatrij k = 2g^1 k£ (oigje + ojgie - oegij)
in local coordinates {xi}, where Oi ~ a~i. Hence
a k 1a k£
otrij = 2, otg · (oigje + ojgie - oegij)- ~gk£ (ai (%tgje) + aj (%tgie) - ae (%tgij)).
In geodesic coordinates centered at p E Mn, one has rfj (p) = 0. It follows
that OiAjk = '! iAjk at p for any tensor A; in particular, Oigjk (p) = 0 for all
i, j, k. Thus we obtaina k 1 ke ( a. a a )
at rij (p) = 2g vi atgje + v j atgie - v e at^9 ij (p) ·Since both sides of this equation are components of tensors, the result holds
in any coordinate system and at any point. DSince the Riemann curvature tensor is defined solely in terms of the
Levi-Civita connection, we can readily compute its evolution.LEMMA 3.3. The evolution of the Riemann curvature tensor Rm is given
bya 1 { vivjhkp + vivkhjp - vivphjk }
(3.4) ot Rfjk = 2iP.- '! j '! ihkp - '! j '! khip + '! j '! phik
PROOF. In local coordinates {xi}, we have the standard formula
Rfjk = air;k - ajrfk + r~krfp -rfkr;v
Thus we compute