104 2. KAHLER-RICCI FLOWPROPOSITION 2. 79 (Evolution equation for the curvature). Under the
Kahler-Ricci flow,(2.100)( :t -~) RoJJy8 = Rap,v8Rμ,j3"(D - Rap,'YvRμ,j3v8 + Raj3vp,Rμ,iJ"(8
1- 2 (Rap,Rμ,j3"(8 + Rμ,j3Rafj,"(8 + R'YμRaj3μ,8 + Rμ,8Raj3"(μ).
REMARK 2.80. The Riemannian analogue of this formula is given by
Lemma 6.15 on p. 179 of [108].In the proof of the proposition we find it convenient to use a formula re-
lating ordinary derivatives and covariant derivatives at the center of normal
holomorphic coordinates.LEMMA 2.81 (Relation between ordinary and covariant derivatives). If
T/ is a closed (1, 1)-form, then, at the center of normal holomorphic coordi-
nates, we have(2.101)(2.102)()2
\7 j3\7 a'T/'Y8 = {)za{)zf3 T/'Y8 + T/>..8Rai3'Y5..'
()2
\7 a \7 j3T/'Y8 = {)za{)zf3 T/'Y8 + T/'Y>..Raj3>..8·PROOF. We compute that at the center of normal holomorphic coordi-
nates,\7 j3\7 a'T/'Y8 = Oj3\7 a'T/'Y8 - r~o \7 a'T/"(E
= 8i3 ( 8a'T/'Y8 - r~'YT/eJ)
= 8j38a'T/'Y8 - oi3r~'YT/e8
a2 - Re -
0 za 0 zf3 T/'Yo + aiJy T/ i;o'where we used (2.4) in the last line; this proves (2.101). Note that (2.102)
is just the conjugate of (2.101). D
Now we give thePROOF OF PROPOSITION 2. 79. We compute the evolution equation for
Rai3'Y8 at any point x and time t using normal holomorphic coordinates
{za} centered at x with respect tog (t). In such coordinates,^8 J;f (x, t) = 0.
Recall from (2.5) that
R ____ 02 9aj3 + pa-ogao-og pj3
a(3"(8 - {)z'Y {)z8 g {)z'Y {)z8.