1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1
so


  1. CENTER OF MASS AND NONLINEAR AVERAGES


We compute using the Jacobi equation

~ Jll = ~ (g (\le;erl, 1))


dr^2 dr Ill

g(\le;erl,1)

2
g(\le;er\le;erl,1) [\le;er1[

2

1113 + 111 + 111


9 (\l e;erl, 1)

2
g (R ( 1, 'Y) 'Y, 1) [\l e;er1[

2

1113 - 111 + 111 '


d2 (
dr2 Ill+ K l'Yl

2
Ill = lll-

1
lll

2
l'Yl

2
K - g (R (1, 'Y) 'Y, 1))


  • lll-


3

(lll

2
[\l e;erl[

2

- 9 (\l e;erl, 1)

2
)
::::: 0,

177

where we used 1 (r) J_ 'Y (r) to conclude that lll^2 l'Yl^2 K -g (R (1, 'Y) 'Y, 1) 2::
0.
The corresponding ODE for¢ (r) is

¢" + K l'Yl^2 ¢ = 0

(l'YI = d(x,y) is a constant since"( is a geodesic) and has solutions

where


and


¢ (r) = ¢ (0) csKl'Yl2 (r) + ¢' (0) snKl'Yl2 (r),

{

~ sin (far)

sn"" (r) = r
~ sinh ( FK,r)

if K, > 0,

if K, = o,


if K, < 0,

{

cos (far) if"'> 0,


cs""(r)= 1 if,,,=0,

cosh ( FK,r) if"'< 0.


The functions sn"" (r) and cs"" (r) are the solutions to ¢" + "'</> = 0 with
sn"" (0) = 0, sn~ (0) = 1, cs"" (0) = 1, and cs~ (0) = 0.
Note that 1/ Ill is a unit vector (and has a limit as r --+ 0) and that


\le;erl(O) is well defined. From fr Ill= g (\le;erl, 1 ~ 1 ) we know that the


limit limr-+O+ fr Ill is also well defined. Now we compare Ill (r) with the


solution¢ (r) which satisfies¢ (0) = JlJ (0) = 0 and¢' (0) = limr-+O+ fr Ill.

Note that


¢ (r) = ¢' (0) snKl-Yl2 (r)
Free download pdf