1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1
192 5. ENERGY, MONOTONICITY, AND BREATHERS

define V ~ gij Vij. Routine calculations give

(5.6) ovrij k (g) = 2,g^1 kl ('\liVjl + 'Vjvil - '\lzVij ) ,
1

(5.7) ovr~j = 2VjV,

(5.8) O(v,h) ( e-f dμ) = (~ - h) e-f dμ.


We calculate the last one, for example,

(5.9) O(v,h) (e-f dμ) = -e-fh dμ + e-f ~gijVij dμ = (~ ·_ h) e-f dμ.


LEMMA 5.3 (First variation of F). Then the first variation of F can

be expressed as

(5.10) O(v h)F (g, f) = - r Vij(Rij + '\li'Vjf)e-f dμ
' JM

+JM(~ -h) (2L).f -1Vfl


2
+ R) e-f dμ,

where O(v,h)F (g, f) denotes the variation of F at (g, f) in the direction
( v, h) , i.e.,

O(v,h)F (g, f) ~ dd 8 I F (g + sv, f +sh).
s=O
PROOF. Recall (Vl-p. 92), i.e.,

Rij = R~ij = aprfj - air~j + r{jr~q -r~jrfq,


so that


o Rij = v p ( orfj) -vi ( or~j).


Since Vi'Vj = aiaj - rfj8k as an operator acting on functions, we have

o (vivjf) = vivj (of) - (orfj) Vpf.


Hence, using (5.7),


o (Rij + vivjf) = Vp (orfj) - (orfj) Vpf +vi (vj (of) - or~j)


= ef'\lp (e-f orfj) + Vi'Vj (h-~).


We then compute


(5.11) o [(Rij + '\li'Vjf) e-f dμ]


= [ Vp (e-forfj) +e-fViV~(h-¥) l dμ.
+ (Rij + '\li'Vjf) e-f ( 2 - h)
Free download pdf