224 6. ENTROPY AND NO LOCAL COLLAPSING
Combining the above three formulas and simplifying a little, we get
b(v,h,() W (g, f, r)
= - JM rVij(Rij + '\li'\ljf)udμ
+/Mr(~ -h) (2Llf-1'7fl
2
+R+f~n)udμ
+JM [h+ (1-~) ((R+ l'Vfl
2
) - ;;(f-n)] udμ.
We rewrite the above expression as
b(v,h,() W (g, f, r)
=JM (-rVij + (gij) (~j + '\Ji'\Jjf)udμ
- JM r ( ~ - h - ;; ) (2Llf -I 'V f I 2 + R + f ~ n) udμ
+JM -((R+L'.lf)udμ+ JM~( (2Llf-1'7fl
2
+R)udμ
+JM ( 1-~) ((R+ l'Vfl^2 )udμ +JM hudμ,
which, by combining terms, we further simplify to
b(v,h,() W (g, f, r)
=JM (-rVij + (gij) (~j + '\Ji'\Jjf)udμ
+]Mr(~ -h-;;) (2Llf-1'7fl
2
+R+f~n)udμ
+JM (n-1) ( ( Llf-1'7!1
2
) udμ +JM hudμ.
Since (is a constant, (6.9) follows from a rearrangement and the integration
by parts identity: JM ( Llf - l'V f1^2 ) e-f dμ = 0. D
REMARK 6.2. Analogous to (5.14) and (5.15), the terms
1 2 f-n
Rij + '\li'Vjf - -
2
9ij and R + 2f:.:.f - l'Vfl + --
r r
in (6.9) are natural quantities vanishing/constant on shrinking gradient Ricci
solitons.
1.1.3. The gradient flow of W. When we require that the variation
( v, h, () satisfies
V n
( = -1 and
2
- h -
27
( = O,