1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

224 6. ENTROPY AND NO LOCAL COLLAPSING


Combining the above three formulas and simplifying a little, we get


b(v,h,() W (g, f, r)

= - JM rVij(Rij + '\li'\ljf)udμ


+/Mr(~ -h) (2Llf-1'7fl


2
+R+f~n)udμ

+JM [h+ (1-~) ((R+ l'Vfl


2

) - ;;(f-n)] udμ.


We rewrite the above expression as

b(v,h,() W (g, f, r)

=JM (-rVij + (gij) (~j + '\Ji'\Jjf)udμ



  • JM r ( ~ - h - ;; ) (2Llf -I 'V f I 2 + R + f ~ n) udμ


+JM -((R+L'.lf)udμ+ JM~( (2Llf-1'7fl

2
+R)udμ

+JM ( 1-~) ((R+ l'Vfl^2 )udμ +JM hudμ,


which, by combining terms, we further simplify to


b(v,h,() W (g, f, r)

=JM (-rVij + (gij) (~j + '\Ji'\Jjf)udμ


+]Mr(~ -h-;;) (2Llf-1'7fl


2
+R+f~n)udμ

+JM (n-1) ( ( Llf-1'7!1


2

) udμ +JM hudμ.

Since (is a constant, (6.9) follows from a rearrangement and the integration


by parts identity: JM ( Llf - l'V f1^2 ) e-f dμ = 0. D

REMARK 6.2. Analogous to (5.14) and (5.15), the terms
1 2 f-n
Rij + '\li'Vjf - -
2

9ij and R + 2f:.:.f - l'Vfl + --
r r

in (6.9) are natural quantities vanishing/constant on shrinking gradient Ricci
solitons.


1.1.3. The gradient flow of W. When we require that the variation

( v, h, () satisfies

V n

( = -1 and
2


  • h -
    27


( = O,
Free download pdf