1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

  1. THE ENTROPY FUNCTIONAL W AND ITS MONOTONICITY 231


EXERCISE 6.13 (First variation formula for We:). Show that, on a closed

manifold Mn, if

(6.28) 5g = v, 5f = h, 5r = (


at (g, f, r), then


(6.29)

r ( (-TVij + (9ij) sfj )
5(v,h,()Wc:(g, f, r) =JM + (~ _ h-~)(Ve+ e) udμ,

where Sfj is defined by (6.27). In particular, if

then


(6.30) 5(v,h,() Wc:(g, f, r) =JM (-TVij + (9ij) Sfjudμ.


SOLUTION TO EXERCISE 6.13. We compute

5vRij = \7 P (5rfj) -\7i (5r~j)


and


5(v,h) (\7i\7jf) = \7i\7j (5f) - (5rfj) \7pf.


Adding these two formulas together, we get


5(v,h) (Rij + \7i\7jf)


= \7p (5rfj) -(5r~) \7pf +-vi (-vj (5f) - 5r~j)


(6.31) =ef\7p(e-f5rfj)+\7i\7j(h-~)·


Tracing this formula, remembering to take the variation of gij, and using
gs T = (imply


5(v,h,() [r (R +fl.!) (47rr)-~ e-f dμ]


= T (-5gij · (Rij + \7i\7jf) + ij · 5 (Rij + \7i\7jf)) (47rr)-~ e-f dμ


+r(R+i:l.f)(47rr)-~ ((1-~)~-h+ ~)e-fdμ

= T (47r7) 2 dμ.
[

-Vij (Rij + \7i\7jf) e-f + \7p (e-f gsr~) j _13:


+e-f fl. (h-~) + (R+ !:l.f) e-f (~ - h-n;-^2 ~)

Free download pdf