1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

  1. IMPROVED VERSION OF NLC AND DIAMETER CONTROL 271


LEMMA 6.80. Let u be a positive solution to the heat equation

(:t-.6.)u=O


on a fixed Riemannian manifold (Mn,9). If f = -logu, that is, u = e-f,
then

(6.102)

PROOF. (1) Using %d = .6.f - l\7 fl^2 , we calculate

! JM l\7fl


2
udμ =!JM (.6.J)udμ

=JM ( 2.6.f - l\7 fl


2
) .6.udμ

= 2 JM (.6.f .6.u + \7i\7jf\7if\7ju) dμ.


Now integrating by parts yields

JM .6.f .6.udμ = - JM \7 f · \7.6.udμ


= - JM (\7 f · .6. \7u - Rij\7if\7ju) dμ


= JM (\7\7 f · \7\7 u - uRij \7 if\7 j f) dμ


=JM (-u l\7i\7jfl^2 - \7i\7jf\7if\7ju - uRij\7if\7jf) dμ.


The lemma immediately follows from combining the above two formulas.


(2) Alternatively, one can integrate the following formula to get (6.102)
(see (2.1) and Lemma 2.1 in [283]):

(:t -.6.) (u(2.6.f-l\7fl


2
)) =-2ul\7i\7jfl

2

-2uRij\7d\7jf,

which follows directly from the calculation:


:t ( 2.6.f - l\7 fl


2
) = 2.6. ( .6.f - l\7f1

2

) - 2\7 f. \7 ( .6.f - l\7f1


2
)

= .6. (2.6.f-l\7fl^2 ) - 2\7f. \7 (2.6.f-l\7fl^2 )


- .6. l\7f1^2 + 2\7 f. \7.6.f


= .6. (2.6.f-l\7fl^2 ) - 2\7f. \7 (2.6.f-l\7fl


2
)


  • 2 l\7i\7jfl^2 - 2~j\7d\7jf.
    D
    Now we can prove the following weaker version of Cheng's Theorem 6.79.

Free download pdf