314 7. THE REDUCED DISTANCE
On the other hand, we compute
d
dT (\lyY,X) = (\lx\lyY,X) + (\lyY, \lxX)
- ~~ (\1 y Y, X) + ( ( :T \l) y Y, X).
Now~~= 2Rc and
( ( : 7 \l) y Y, X) = 2 (Vy Re) (Y, X) - (\1 x Re) (Y, Y).
Hence
(7.60)
d
dT (\lyY,X) = (\lx\lyY, X) + (\lyY, \lxX) + 2Rc (\lyY, X)
+ 2 (\ly Re) (Y, X) - (\1 x Re) (Y, Y).
Suppose
(7.61) y (0) = 0
(this and the fact that ft X ( T) has a limit as T ---+ 0 are used to get the
third equality below). Then applying (7.60) to (7.59) and integrating by
parts, we compute
( 8f C) ('Y)
= 1
7
VT (Y (Y (R)) + 2 (R(Y, X) Y, X) + 2 l\lyX1^2 ) dT
+2 yT ~
1
(^7) r::: ( d~ (\ly Y, X) - (\ly Y, \l xX) - 2 Re (\ly Y, X) )
o -2 (\ly Re) (Y, X) + (\1 x Re) (Y, Y)
= 1
7
VT (Y (Y (R)) + 2 (R (Y, X) Y, X) + 2 J\lyXJ^2 ) dT
+ 2 yT dT
1
(^7) r::: ( - (\ly Y, \l xX) - 2 Re (\ly Y, X) )
o -2 (\ly Re) (Y, X) + (\1 x Re) (Y, Y)
- 2yfi (V'y Y, X) I~ -fo'f ~ (\ly Y, X) dT
= 2yT (\lyY. X) + Vi dT
~ 1'f (Y(Y(R))-\lyY·\lR )
' o +2 (R(Y, X) Y, X) + 2 J\lyXJ^2
+ 2 yT r dT
1
'f r:::(-(\lyY,[\lxX+2Re(X)-~\lR+2^1 X]))
o -2 (\ly Re) (Y, X) + (\1 x Re) (Y, Y)
= 2./f-(\lyY, X) + 1
7
VT (v},yR + 2 (R (Y, X) Y, X) + 2 J\lyXJ^2 ) dT
- 1
7